数值分析1绪论习题课.docx
《数值分析1绪论习题课.docx》由会员分享,可在线阅读,更多相关《数值分析1绪论习题课.docx(10页珍藏版)》请在三一办公上搜索。
1、数值分析1绪论习题课绪论与非线性方程求根习题课 一、假设x1=4.8675,x2=4.08675,x3=0.08675是由四舍五入得到的近似数,求下列各近似数的误差限 1x1+x2+x3;2. x1x2; 3.x1x2 111-5-5-4e(x)10e(x)10Qe(x)10解:,22,32 121、e(x1+x2+x3)=e(x1)+e(x2)+e(x3) e(x1)+e(x2)+e(x3) 111-4-510+10+10-5=610-5 2222由e(x1x2)x2e(x1)+x1e(x2)得 e(x1x2)x2e(x1)+x1e(x2) x2e(x1)+x1e(x2)11-4-5-4 4
2、.0867510+4.867510=2.286751022x11x13e(x2)x2e(x1)-x22e(x2) x11e(x1)+2e(x2)x2x2114.86751-4-5-510+101.3692104.0867524.0867522e*x*-x二、.说明把相对误差的计算公式er=x=x用公式e*x*-xer=*=来代替的合理性,并指出这种替代的条*xx件。 证明: x*-xx*-x11*(x*-x)2er-er=-*=(-*)(x-x)=xxxxxx* 因而 22x-x2xx1erer-er=(*)=er*=er=e(x)1-erxxx-e(x)1-*x*2或 x*-x2xx2er-
3、er=*=erxxx+e(x)2e1=er2=re(x)1+er1+x说明只要er1或er1就可以替换。 三、设n次多项式 Pn(x)=anxn+an-1xn-1+a1x+a0 试构造一个计算Pn(x)的算法,使其计算量尽可能小。 四、设y0=28,按递推公式 1yn=yn-1-783,n=1,2, 100计算到y100,取78327.982,试问计算到y100将有多大误差? 解 y0=281yn=yn-1-783n=1,2, 100*y0=28*1*27.982,yn=yn-1-100n=1,2, *e=y-y记n和相减,得 nn,e0=0e=e-1(783-27.982),nn-1100n
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数值 分析 绪论 习题
链接地址:https://www.31ppt.com/p-3558787.html