应用题的数量关系及其教学.docx
《应用题的数量关系及其教学.docx》由会员分享,可在线阅读,更多相关《应用题的数量关系及其教学.docx(34页珍藏版)》请在三一办公上搜索。
1、应用题的数量关系及其教学应用题的数量关系及其教学 小学数学课程标准对小学数学应用题作了较大的改革,对于克服原来应用题存在的诸多弊端,培养学生从数学的角度提出问题,发展应用意识,形成解决问题的策略,发展实践能力与创新精神起了积极的作用。但在最近几年的实践中,许多教师对教材中应用题的数量关系教学要求不太明确展开了讨论。笔者通过学习、研究,对数量关系的有关问题进行了思考,下面从三个方面与同行交流,祈求大家批评指正。 一、数量关系是数量之间的本质联系。 应用题的数量关系就是从一类共同规律的数学问题中总结出来的某些数量之间的本质联系,并以数量关系式表示这种联系。小学数学中的数量关系主要涉及两个层面,一个
2、是基本数量关系;另一个是常用的数量关系。 基本数量关系一般是根据四则运算的意义分为四类:部分数与总数关系,两数相差关系,每份数、份数与总数关系,倍数关系,其中再分加法两种、减法三种、乘法两种、除法四种共十一种,并用相应的数量关系式表示,以此列出十一种简单应用题的名称。苏教版小学数学教材,根据学生认知水平,将这十一种基本数量关系分散在一、二年级各册,结合加、减、乘、除的意义中进行教学。具体安排如下表: 数量关系 部分数+部分数=总数 总数部分数=部分数 大数小数=相差数 小数+相差数 =大数 大数相差数=小数 每份数份数=总数 总数份数=每份数 教材 一上 一上 一下 二下 二下 二上 二上 二
3、上 简单应用题名称 求总数 求剩余数 求两数相差多少 求比一个数多几的数 求比一个数少几的数 求几个相同加数的和 求每份数 求一个数包含几个另一个数 部分与总数关系 两数相差关系 每份数、份数与总数的关系 总数每份数=份数 几倍数一倍数=倍数 二下 倍数关系 几倍数倍数=一倍数 二下 一倍数倍数=几倍数 二下 求一个数是另一个数的几倍 已知一个数的几倍是多少,求这个数 求一个数的几倍是多少 表中的十一种数量关系构成了现实世界的数学模型,不仅成为思考解答简单应用题的依据,而且是解答复合应用题的依据,因为在解答复合应用题时,每一步都离不开这种关系,无论应用题的内容怎样千变万化,但是在加、减、乘、除
4、的运算过程中,每一步的关系都不会离开上述关系的某一种。以后随着年级的升高,教学“求一个数是另一个数的几分之几”、“求一个数的几分之几是多少”和“比的前项:比的后项=比值”等数量关系式,实质上也是从其中有关的关系式上延伸拓展而来的,所以这十一种数量关系大家习惯上称基本的数量关系,在小学应用题教学中有着十分重要的地位。 学生在运用运算意义和基本数量关系解决生产、生活中实际问题的基础上,对周围生活中的一些数量关系积累了一些感性的认识,教师可以适当地引导他们再抽象概括一些具体的数量关系式,大家习惯上称这种数量关系为“常见的数量关系”。例如:原有数量与增加数量、现有数量之间的关系;原有数量与用去数量、剩
5、下数量之间的关系;单价与数量、总价之间的关系;工作效率与工作时间、工作总量之间的关系; 速度与时间、路程的关系等等。 上述各种数量关系是小学学习的重要基础,而且是升入高一级学校以后,学习数学、物理、化学中更多更复杂的数量关系的重要基础。 二、数量关系是应用题教学的核心。 数量关系为什么成为应用题教学的核心,可以从以下四个方面来理解: 1.数量关系是应用题的重要结构之一。应用题是数学表述与客观存在的中介,是去掉无关因素而只保留了数量关系的现实。所以,一道完整的应用题,都由两个基本部分组成:一是事理,说的是怎么回事及其情节的发展变化;二是至少具备两个已知条件和一个问题。事理和数量关系交织在一起的,
6、而且是不可分割的,但其中的数量关系是运用数学知识分析和解决生产、生活中具体问题中特有的而且必须具备的,好像人的骨架一样支撑着人体。现在新教材的呈现形式变了,应用题的名称也变了,但应用题的结构没有变;根据已知条件解决问题的本质属性没有变;依据数量关系确定解题思路和方法没有变,所以,数量关系是应用题结构中不可缺少的。 2.数量关系是解答应用题的关键。正确解答应用题的思路和方法,一般包括三个要素:一是思考的目标;二是比较熟悉的数量关系;三是有序的推理步骤与方法。其中熟悉基本的数量关系是关键。因为数量关系是应用题解答的重要模型之一,如果数量关系熟悉了,就能根据题中已知的两个数量,可以求出第三个数量;如
7、果根据要求的数量,就必须知道另外两个数量。即使比较复杂的两、三步应用题,可以灵活运用题中的条件进行有效组合,可以逐步获得解题的途径与方法。学生在中低年级这个基础牢固了,又为以后判断正、反比例和方程中寻找等量关系式作了厚实的铺垫。 3.抓数量关系是应用题教学的优良传统。历次课程改革的经验证明:改革不是废弃传统,不是对原有的全盘否定,也不是完全重砌炉灶,而是在已有经验基础上的继承与创新、发展与完善。抓应用题中的数量关系,是不知多少代数学教师和专家经过长期实践和研究的结晶,绝对不能削弱,更不能取消。大家可以回顾新教材实验的历史,从正、反两方面的经验也教育了我们。同样是面对教材的呈现形式,很难从整体上
8、把握数量关系的教学要求,但处理方式不同,其效果迥然不同。有些人在教学中“淡化”,“边缘化”;有些人适时渗透,有序概括,强化训练,却学生在分析推理、解题策略、数学思维水平等方面都有明显的差距。因此,最近几年,数学教师对注重数量关系教学的呼声越来越高,既反映了应用题教学的内在要求,更突出地反映了大家继承优良传统,注重数量关系教学的强烈愿望。 4.数量关系是人们生活工作的必需。数量关系来源于生活,反过来又是为人们认识事物、分析事物,解决生产、生活中的实际问题服务的,而且随着科学技术的进步,各行各业都离不开基本的数量关系,并把数量关系作为考核人才的重要标准之一。例如,最近几年全国在招收公务员的笔试中,
9、“数量关系”作为必考内容之一,而且所占权重也不小。考查数量关系的内容有数与运算、空间图形、推理等,其中不少题是小学数学中的思考题,如速算题,用绳子测井深、较复杂的分数工程问题、鸡兔同笼问题等。 三、数量关系是应用题教学的主线。 数量关系的教学从什么时候开始?怎么进行教学?是每个数学教师值得研究和关注的问题。从大量的教学实践证明,数量关系的教学不是从中、高年级开始的,实际上是从一年级数的“分”与“合”和运算的意义教学就开始,是在大量的解决实际问题的漫长过程中逐步构建的,数学教学一直沿着数量关系这根线进行着。针对目前数量关系教学的现状,应注意以下四点: 1.注意构建数量关系的阶段性。儿童少年的认知
10、规律是由浅入深、由易到难,由具体到抽象。学生数量关系的构建,是在教师有意识的启发引导下,经历渗透、感知、体验、积累和抽象概括的过程。在这个过程中教师要选择适当的时机进行抽象概括,达到水到渠成的效果。如果概括的时机未到,造成死记硬背,机械照搬,不会运用;如果时机已到,不去归纳总结,老是停留在原有水平,认识不能得到升华。因此,应在学生理解运算意义并运用意义解决大量的实际问题过程中,选择适当时机有意识地进行分段概括。一般来说,低年级结合运算意义的教学,以基本数量关系为主;中年级以常用数量关系为主;高年级以灵活运用各种数量关系为主。对某一种具体数量关系,也有一个构建的过程。例如,“每份数份数=总数”的
11、数量关系的建立,一般经过了以下五个过程: 一是渗透孕伏,在“222=6”等相同加数的计算中,教师有意识地说出3个2相加得6. 二是运算意义。3个2相加,用乘法算式表示“32=6”. 三是初步概括。每本书元数本数=总共元数。 四是基本数量关系。每份数份数=总价。 五是常见数量关系。单价数量=总价 其实,教材中也有不少练习题,为我们提供了归纳、概括数量关系的时机。例如,一年级上册有道题: 原有 借出 还剩 17个 7个 个 6个 6个 个 10条 8条 条 教师可以引导学生结合表格,联系生活概括出“原有数量借出数量还剩数量”的关系式。又如在二年级下册涉及到购物问题中求总价,三年级上册求总价和单价的
12、问题,可以从中概括“单价数量总价”、“总价数量单价”的数量关系式。这样让学生经历从感性到理性、从具体到抽象的认知过程,逐步学会把生活情境、运算意义、运算方法与基本数量关系联系起来,对数量关系的理解更深刻,在学习和生活中迁移性更强,为后续学习打下更坚实的基础。 2.强化传统的分析数量关系方法。分析应用题的数量关系,就是分析已知量与已知量之间、已知量与未知量之间的关系。大量的教学实践证明,分析应用题的数量关系,除了运用运算意义、基本数量关系和关键语句等方法之外,综合法、分析法和作图法等是分析数量关系、解决两、三步应用题的基本而又有效的方法。当代数学教师应继承优良传统,努力让学生理解和应用。所谓综合
13、法,就是从已知条件出发,逐步推出要解决的问题。所谓分析法,是从问题出发,找出解决问题的两个必要条件,然后看这两个条件中,哪个是已知的,哪个是未知的,对这个未知条件,再去找能解决它的两个条件,直到这些条件都从题目中已知的条件中找到为止。一般来说,综合法适合于低学段,分析法适合于高学段,但实际运用中往往灵活地结合起来的。在运用这些方法的过程中,培养学生寻找中间问题的能力是关键。对此,在课改前的教材中有些思维训练方式是可以借鉴的。一是把画线段图作为帮助学生理解数量关系的重要辅助手段。老教材情境图少,线段图多,新教材情境图多,线段图少,教学中应让学生根据题意和题中表示数量关系的词句学会画线段图。二是补
14、充分析数量关系的专项训练。根据条件补问题,根据问题补条件,把一步计算的应用题改为两步计算的应用题和自编应用题等,帮助学生熟悉常用数量之间的关系并建立数量关系的对应感,让学生能从已知的两个数量中判断出可以求到什么数量用什么方法;也可以从问题中,可以想到必须具备什么已知条件,用什么方法计算,从而形成正确的解题思路和方法。 3.理解和运用特殊策略。关于特殊策略的内容在原来教材中很少出现,即使有也安排在思考题中,作为选学内容,或者在数学课外读物中,作为奥数辅导之用。苏教版新教材从第二学段起,每册都编写了“解决问题的策略”单元,能让学生理解和运用枚举、列表、假设、转化等特殊策略,进行数学思想方法的教学,
15、丰富学生的解题思路和方法,逐步培养学生解决问题的策略意识和运用策略的自觉性。在特殊策略的教学过程中应注意以下三点: 第一,分析题中的数量关系仍然是关键。特殊策略的教学不是原来有些人印象中的解题公式的教学,实际上还是抓住题中的数量关系进行解题思路和方法的教学。 第二、注重常用方法与特殊策略的相互配合。策略教学的实践表明,特殊策略是常用策略的延伸与拓展,在常用策略与特殊策略的运用中不是相互割裂的,而是相互联系、相互依存、相互结合、相互促进的,在解决问题的过程中是在新老策略的共同作用下完成的。 第三、特殊策略的教学要有个“度”。这个“度”就是深浅要适当,要因材施教,分层要求。从人教版的教学用书中得知
16、,特殊策略不作为考核评价的内容。笔者认为这是非常合理,而且符合实际的,因为现行教材中,一个策略一般只编排一个例题,而练习题的坡度较大,有的题数量关系复杂,有些学生还不一定全理解,有的为了应付考试,一二再、再二三的进行练习、复习,加重了学业负担。因此,特殊策略的教学要教好,但对不同水平的学生应有不同的要求,让其各得其所。 4. 在说理训练中促进学生灵活运用数量关系。 理性是数学的根本,数学教学的过程是一个讲理的过程。因为说理是培养学生语言表达能力、逻辑思维能力和灵活运用数量关系能力的重要途径,也是衡量学生数学素质高低的重要标准之一。教师不仅要让学生知道怎么做,还要让学生知道为什么这样做,这已成为
17、数学教师的共识。 学生说理的内容一般包括解题的思路、方法及其依据,以及解题的收获、体会等。学生说理的形成,一般为个人独立思考先试着说,在小组、全班学生面前说,人家说了再评价、补充等。教师在指导学生说理方法的过程中应注意以下三点: 第一、要保持教路、学路与说理思路的一致性。教师在教学应用题中,应注重运用数量关系进行分析推理的严谨性,形成一个比较规范的话语系统,让学生正确理解解题思路和方法,从而获得比较清晰的说理思路。例如,在一步计算应用题教学中,分析数量关系时,应注意两个转化:第一个转化是把实际问题转化成数学问题;第二个转化是将数学问题转化成式子。又如在两步以上应用题教学中,应根据“综合法”、“
18、分析法”的思路,有根有据地说出先算什么,后算什么,以培养学生思维的条理性、严密性。 第二、抓住学生思维的盲点重点说。随着学生年齡的增长,知识经验和生活经验的不断丰富,解决问题的思维更加宽广,方法更加多样。但有些方法不一定被大家所理解,成为思维的盲点,教师应引导学生说深说透。例如,有些题往往可以一题多解或多题一解,对其中有些个性化的解法,有些学生学生不一定理解。教师应让这些学生讲清每种方法的思维过程、算式的每一步所表示的意义,使大家把解题思路与数量关系、运算意义等数学知识从纵向、横向沟通起来,让学生以结网成块的方式储存起来,既减少记忆负担,更重要的培养了思维的广阔性与灵活性。 第三、把数量关系与
19、数学思想融合起来。数学思想是人们对数学知识与方法的本质认识。数学思想蕴含在数学知识和方法中,并通过方法呈现出来。在日常教学中,数学思想往往被大家所忽视,即使有些老师讲了,但学生在说解题思路和方法中反映得不够充分。在小学数学教学中应该有意识地渗透数学思想,应让学生在说理等过程中外显出来,促进学生数学素质的提高。例如,有关分数的应用题,千变万化,但万变不离其宗,只要根据数量关系找到了具体数量与分率相对应,就找到了解决问题的钥匙。如果教师在教学中经常引导学生把分析数量关系与对应思想结合起来说解题的思路和方法,就能使学生感到解题的思路更加开阔、策略更丰富,原来认为枯燥的数学散发出了理性之美,从而对数学
20、产生了内在的兴趣。 数学思想方法是学生终身受用的知识,在小学数学中渗透数学思想的内容是比较多的,别的不说,就对应思想的有:在数量关系式中的两个量与第三个量对应;求平均数中总数量与总份数对应;在求面积中底与高相对应;数轴上的点与具体的数相对应等。 总之,新课程理念下应用题的教学,关键仍然是让学生分析数量关系,确定解题思路,获得解题方法。数学教师在教学中注重数量关系的感知、体验、总结、提炼并适当地灵活运用,可以有效地提高学生的数学素质,为以后的学习、生活和工作打下坚实的基础。 浅议新课改背景下数量关系的学习 摘要随着新一轮课程改革的实施,“数学生活化”的口号越来越响亮。但在实际的教学实践中,有些老
21、师在教材丰富的画面下迷失了方向,过分强调了“生活化”,教学目的就停留在解决课本涉及的具体问题上,完全否定了传统应用题教学中的数量关系,造成了应用题的教学较“散”,学生解决数学问题的能力下降,甚至对基本的数量关系都不能掌握运用,这也是违背课改初衷的。 关键词解决问题 生活化 数学化 数量关系 “数学是对客观世界数量关系和空间关系的一种抽象。”学习数量关系仍然是“解决问题”的关键,应该让“生活化”的数学问题上升为一种数学模型,将数学思想应用于现实生活中,真正解决学生身边的实际问题,让数学真正成为“人们生活、劳动和学习必不可少的工具。” 一、用数学化的语言表述生活问题 在数学学习过程中,教师应该充分
22、利用学生的认知规律、已有的生活经验和数学的实际,让学生到生活中“找”数学,“想”数学,真切感受“生活中处处有数学。”如课题的导入、例题的呈现、练习的设计等应结合学生生活实际,重视学生已有的生活经验,寻找解决问题所需要的信息数据,让学生探索解决问题的方法。 新教材解决问题的呈现方式紧贴生活、图文并茂、趣味性强,符合学生的年龄特点。如一年级教材中,一道加减混合运算,题目以图的形式呈现:左边一幅图为一池塘里有6只鸭,岸上向着池塘方向有3只鸭;右边一幅,池塘里有5只鸭,背着池塘有4只鸭。让学生列式。题的本意是6+3-4=5,但多数学生一脸的茫然,无从下手。或者乱列一通:9+9=18,6+5=11等。但
23、如果让学生用语言描述:池塘里原来有6只鸭,又来了3只;后来走了4只鸭,现在还有多少只鸭?这样列式就容易多了。 因此,用数学语言对生活情境和主题图进行表述就显得很重要了。此外,当学生完成解题后,让他们说说自己的解题思路,这也是展示学生思维过程的重要方式,能促进学生的思维从直观感知上升到数学理解。 二、在生活化的数学问题中提炼数量关系 新课程解决实际问题并不是不讲数量关系。新课程标准明确提出:“探索并理解简单的数量关系”“应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程。”这就告诉我们,数学应用题的教学不能没有数量关系,而数量关系就是一种数学模式,数学问题的解决过程就是用“不变
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 应用题 数量 关系 及其 教学
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-3504103.html