《年级上三角形教案.docx》由会员分享,可在线阅读,更多相关《年级上三角形教案.docx(19页珍藏版)》请在三一办公上搜索。
1、年级上三角形教案学 科 教 案 课题:11.1.1三角形的边 课型:新授课 教材内容简析: 三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。 学生情况分析: 教学目标: 知识与技能: 了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形 。 过程与方法: 理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解
2、决 有关的问题。 情感态度和价值观: 教学分析: 教学重点及解决措施: 三角形的有关概念和符号表示,三角形三边间的不等关系。 教学难点及解决措施: 用三角形三边不等关系判定三条线段可否组成三角形。 教学方法: 教学媒体: 课时规划: 教学过程: 一、提出问题,情景导入 三角形是一种最常见的几何图形, 投影1-6如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。 那么什么叫做三角形呢? 二、合作学习,新知探究 1、三角形及有关概念 、三角形定义:不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。 、理解应注意:三条线段必须不在一条直线上,首尾顺次相接。 、三角形相关概念
3、: 边:组成三角形的线段叫做三角形的边。 三角形ABC的顶点C所对的边AB可用c,表示,顶点B 所对的边AC可用b表示,顶点A所对的边BC可用a表示。 角:相邻两边所组成的角叫做三角形的内角,简称角。 顶点:相邻两边的公共端点是三角形的顶点。 (4)、三角形表示:三角形ABC用符号表示为ABC。. Bc a Ab (1)C 2、三角形三边的不等关系 探究:投影7任意画一个ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么? 有两条路线:从BC,从BAC;不一样, AB+ACBC ;因为两点之间线段最短。 同样地有 AC+BCAB AB+BC
4、AC 由式子我们可以知道什么? 三角形的任意两边之和大于第三边. 3、三角形的分类 、按角分类: 、按边分类: 三、知识迁移,巩固提高 例 用一条长为18的细绳围成一个等腰三角形。如果腰长是底边的2倍,那么各边的长是多少?能围成有一边长为4的等腰三角形吗?为什么? 分析:等腰三角形三边的长是多少?若设底边长为x,则腰长是多少?“边长为4”是什么意思? 四、达标检测 课本第4页练习1、2题。课本第8页1、2、6题 五、课堂小结 1、三角形及有关概念; 2、三角形的分类; 3、三角形三边的不等关系及应用。 六、作业: 课本第8页习题11.1第7题。 七、教学反思: 八、板书设计: 学 科 教 案
5、课题:11.1.2 三角形的高、中线与角平分线 课型:新授课 教材内容简析: 三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。 学生情况分析: 教学目标: 知识与技能: 经历画图的过程,认识三角形的高、中线与角平分线 。 过程与方法: 会画三角形的高、中线与角平分线。 情感态度和价值观: 了解三角形的三条高所在的直线,三条中线,三条角平分线分
6、别交于一点。 教学分析: 教学重点及解决措施: 三角形的高、中线与角平分线。 教学难点及解决措施: 用三角形三边不等关系判定三条线段可否组成三角形。 教学方法: 教学媒体: 课时规划: 教学过程: 一、提出问题,情景导入 我们已经知道什么是三角形,也学过三角形的高。三角形的主要线段除高外,还有中线和角平分线值得我们研究。 二、合作学习,新知探究 1、三角形的高 、请你在图中画出ABC的一条高并说说你画法。 从ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做ABC的边BC上的高,表示为ADBC于点D。注意:高与垂线不同,高是线段,垂线是直线。 、请你再画出这个三角形AB
7、 、AC边上的高,看看有什么发现?结论:三角形的三条高相交于一点。 、如果ABC是直角三角形、钝角三角形,上页的结论还成立吗?现在我们来画钝角三角形三边上的高。 、请你画一个直角三角形,再画出它三边上的高。 上面的结论还成立。 2、三角形的中线 、如图二,我们把连结ABC的顶点A和它的对边BC的中点D,所得线段AD叫做ABC的边BC上的中线,表示为BD=DC或BD=DC1/2BC或2BD=2DC=BC. 、请你在图中画出ABC的另两条边上的中线,看看有什么发现? 、如果三角形是直角三角形、钝角三角形,上页的结论还成立吗? 3、三角形的角平分线 、如图,画A的平分线AD,交A所对的边BC于点D,
8、所得线段AD叫做ABC的角平分线,表示为BAD=CAD或BAD=CAD1/2BAC或2BAD=2CADBAC。 思考:三角形的角平分线与角的平分线是一样的吗? 三角形的角平分线是线段,而角的平分线是射线,是不一样的。 、请你在图中再画出另两个角的平分线,看看有什么发现? 结论:三角形三个角的平分线相交于一点。 、如果三角形是直角三角形、钝角三角形,上页的结论还成立吗?请画图回答。 上面的结论还成立。 、想一想:三角形的三条高、三条中线、三条角平分线的交点有什么不同? 结论:三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在
9、角直角顶点,钝角三角形的三条高的交点在三角形的外部。 三、知识迁移,巩固提高 例题、画钝角三角形的高。 四、达标检测 课本第5页练习1、2题。 五、课堂小结 1、三角形的高、中线、角平分线的概念和画法。 2、三角形的三条高、三条中线、三条角平分线及交点的位置规律。 六、作业: 课本第8页习题11.1第4题,第9页第9题。 七、教学反思: 八、板书设计: ABDC学 科 教 案 课题:11.1.3三角形的稳定性 课型:新授课 教材内容简析: 三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上
10、,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。 学生情况分析: 教学目标: 知识与技能: 知道三角形具有稳定性,四边形没有稳定性。 过程与方法: 了解三角形的稳定性在生产、生活中的应用。 情感态度和价值观: 教学分析: 教学重点及解决措施: 三角形稳定性。 教学难点及解决措施: 三角形稳定性及应用。 教学方法: 教学媒体: 课时规划: 教学过程: 一、提出问题,情景导入 盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢? 二、合作学习,新知探究 1、三角形的稳定
11、性 实验 、把三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗? 结论:不会改变。 、把四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗? 结论:会改变。 、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗? 结论:不会改变。 2、从上面的实验中,你能得出什么结论? 三角形具有稳定性,而四边形不具有稳定性。 三、知识迁移,巩固提高 三角形具有稳定性固然好,四边形不具有稳定性也未必不好,它们在生产和生活中都有广泛的应用。如: 钢架桥、屋顶钢架和起重机都是利用三角形的稳定性,活动挂架则是利用四边形的不稳定性。 你还能举出一些例子吗? 四
12、、达标检测 1、下列图形中具有稳定性的是 A正方形 B长方形 C直角三角形 D平行四边形 2、要使下列木架稳定各至少需要多少根木棍? 3、课本第7页练习。 五、课堂小结 三角形具有稳定性,而四边形不具有稳定性。 六、作业: 作业:课本第8页习题11.1第5题。 七、教学反思: 八、板书设计: 学 科 教 案 课题:11.2.1三角形的内角 课型:新授课 教材内容简析: 三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介
13、绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。 学生情况分析: 教学目标: 知识与技能: 掌握三角形内角和定理。 过程与方法: 能利用三角形内角和定理解决实际问题。 情感态度和价值观: 教学分析: 教学重点及解决措施: 三角形内角和定理。 教学难点及解决措施: 三角形内角和定理的证明。 教学方法: 教学媒体: 课时规划: 教学过程: 一、提出问题,情景导入 我们在小学就知道三角形内角和等于1800,这个结论是通过实验得到的,这个命题是不是真命题还需要证明,怎样证明呢? 二、合作学习,新知探究 1、三角形内角和的证明 、回顾我们小学做过的实验,你是怎样操作的? 把一
14、个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出BCD的度数,可得到A+B+ACB=1800。 投影1 图1 、想一想,还可以怎样拼? 剪下A,按图拼在一起,可得到A+B+ACB=1800。 图2 把和剪下按图拼在一起,可得到A+B+ACB=1800 如果把上页移动的角在图上进行转移,由图1你能想到证明三角形内角和等于1800的方法吗? 已知ABC,求证:A+B+C=1800。 由图2、图3你又能想到什么证明方法?请说说证明过程。 三、知识迁移,巩固提高 1、例 如图,C岛在A岛的北偏东500方向,B岛在A岛的北偏东800方向,C岛在B岛的北偏西400方向,从C岛看A、B两岛的视角ACB
15、是多少度? 分析:怎样能求出ACB的度数? 根据三角形内角和定理,只需求出AB和CBA的度数即可。 CAB等于多少度?怎样求CBA的度数? 2、在直角三角形ABC中,C 900由三角形内角和定理,得A+B+C=1800, 所以A+B900 三角形内角和定理的推论:直角三角形的两个锐角互余。 四、达标检测 课本13页1、2题。 五、课堂小结 1、三角形内角和定理 三角形三个内角的和等于1800 2、三角形内角和定理的推论:直角三角形的两个锐角互余。 六、作业: 课本16页习题11.2 第3、4。 七、教学反思: 八、板书设计: 学 科 教 案 课题:11.2.2三角形的外角 课型:新授课 教材内
16、容简析: 三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。 学生情况分析: 教学目标: 知识与技能: 理解三角形的外角。 过程与方法: 掌握三角形外角的性质,能利用三角形外角的性质解决问题。 情感态度和价值观: 教学分析: 教学重点及解决措施: 三角形的外角和三角形外角的性质。 教学难点及解决措施: 理解三角形的外角。 教学方法: 教学媒体:
17、 课时规划: 教学过程: 一、提出问题,情景导入 投影1如图,ABC的三个内角是什么?它们有什么关系? 是A、B、C,它们的和是1800。 若延长BC至D,则ACD是什么角?这个角与ABC的三个内角有什么关系? 二、合作学习,新知探究 1、三角形外角的概念 ACD叫做ABC的外角。也就是,三角形一边与另一边的延长线组成的角,叫做三角形的外角。 想一想,三角形的外角共有几个? 注意:每个顶点处有两个外角,它们是对顶角。研究与三角形外角有关的问题时,通常每个顶点处取一个外角. 2、三角形外角的性质 容易知道,三角形的外角ACD与相邻的内角ACB是邻补角,那与另外两个角有怎样的数量关系呢? 投影2如
18、图,这是我们证明三角形内角和定理时画的辅助线,你能就此图说明ACD与A、B的关系吗? CEAB, A=1,B=2 又ACD=1+2 ACD=A+B 你能用文字语言叙述这个结论吗? 三角形的一个外角等于与它不相邻的两个内角之和。 三、知识迁移,巩固提高 例 如图,1、2、3是三角形ABC的三个外角, 它们的和是多少? 分析:1与BAC、2与ABC、3与ACB 有什么关系?BAC、ABC、ACB有什么关系? 解:1+BAC=1800,2+ABC=1800,3+ACB=1800, 1+BAC+2+ABC+3+ACB=5400 又BAC+ABC+ACB=1800 1+2+3=3600。 你能用语言叙述
19、本例的结论吗? 三角形外角的和等于3600。 四、达标检测: 课本15页练习; 五、课堂小结: 1、什么是三角形外角? 2、三角形的外角有哪些性质? 六、作业: 课本17页习题11.2第8、9题。 七、教学反思: 八、板书设计: 学 科 教 案 课题:11.31 多边形 课型:新授课 教材内容简析: 三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和
20、公式。 学生情况分析: 教学目标: 知识与技能: 了解多边形及有关概念,理解正多边形的概念。 过程与方法: 区别凸多边形与凹多边形。 情感态度和价值观: 教学分析: 教学重点及解决措施: 多边形及有关概念、正多边形的概念。 教学难点及解决措施: 区别凸多边形与凹多边形。 教学方法: 教学媒体: 课时规划: 教学过程: 一、情景导入 投影1看下页的图片,你能从中找出由一些线段围成的图形吗? 二、多边形及有关概念 这些图形有什么特点? 由几条线段组成;它们不在同一条直线上;首尾顺次相接 这种在平页内,由一些不在同一条直线上的线段首尾顺次相接组成的图形叫做多边形。 多边形按组成它的线段的条数分成三角
21、形、四边形、五边形、n边形。这就是说,一个多边形由几条线段组成,就叫做几边形,三角形是最简单的多边形。 与三角形类似地,多边形相邻两边组成的角叫做多边形的内角,如图中的A、B、C、D、E。多边形的边与它的邻边的延长线组成的角叫做多边形的外角如图中的1是五边形ABCDE的一个外角。投影2 连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线 四边形有几条对角线?五边形有几条对角线?画图看看。 你能猜想n边形有多少条对角线吗?说说你的想法。 n边形有1/2n条对角线。因为从n边形的一个顶点可以引n3条对角线,n个顶点共引n条对角线,又由于连接任意两个顶点的两条对角线是相同的,所以,n边形有1/2
22、n条对角线。 三、凸多边形和凹多边形 投影3如图,下页的两个多边形有什么不同? 在图中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形。 注意:今后我们讨论的多边形指的都是凸多边形 四、正多边形的概念 我们知道,等边三角形、正方形的各个角都相等,各条边都相等,像这样各个角都相等,各条边都相等的多边形叫做正多边形。 投影4下页是正多边形的一些例子。 五、课堂练习 1、课本81页练习1。 2、有五个人在告别的时候相
23、互各握了一次手,他们共握了多少次手?你能找到一个几何模型来说明吗? 六、课堂小结 1、多边形及有关概念。 2、区别凸多边形和凹多边形。 3、正多边形的概念。 4、n边形对角线有条。 七、作业: 课本21页练习1,2。 八、教学反思: 九、板书设计: 学 科 教 案 课题:11.32 多边形的内角和 课型:新授课 教材内容简析: 三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质
24、研究了多边形的内角和、外角和公式。 学生情况分析: 教学目标: 知识与技能: 了解多边形的内角、外角等概念 。 过程与方法: 能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算。 情感态度和价值观: 教学分析: 教学重点及解决措施: 多边形的内角和与多边形的外角和公式。 教学难点及解决措施: 多边形的内角和定理的推导。 教学方法: 教学媒体: 课时规划: 教学过程: 一、复习导入 我们已经证明了三角形的内角和为180,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360,现在你能利用三角形的内角和定理证明吗? 二、多边形的内角和 投影1如图,从四边形的一个顶
25、点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度? 可以引一条对角线;它将四边形分成两个三角形;因此,四边形的内角和=ABD的内角和+BDC的内角和=2180=360。 类似地,你能知道五边形、六边形 n边形的内角和是多少度吗? 投影2观察下页的图形,填空: 五边形 六边形 从五边形一个顶点出发可以引 对角线,它们将五边形分成 三角形,五边形的内角和等于 ; 从六边形一个顶点出发可以引 对角线,它们将六边形分成 三角形,六边形的内角和等于 ; 投影3从n边形一个顶点出发,可以引 对角线,它们将n边形分成 三角形,n边形的内角和等于 。 n边形的内角和等于180
26、从上页的讨论我们知道,求n边形的内角和可以将n边形分成若干个三角形来求。现在以五边形为例,你还有其它的分法吗? 分法一 投影3如图1,在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形。 五边形的内角和为5180一2180180=540。 分法二 投影4如图2,在边AB上取一点O,连OE、OD、OC,则可以个三角形。 五边形的内角和为180一180180 如果把五边形换成n边形,用同样的方法可以得到n边形内角和180 三、例题 投影6 例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系? 如图,已知四边形ABCD中,AC180,求B与D的关系 分析:A、
27、B、C、D有什么关系? 解:A+B+C+D=180=360 又AC180 BD= 360=180 这就是说,如果四边形一组对角互补,那么另一组对角也互补 投影7例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和六边形的外角和等于多少? 如图,已知1,2,3,4,5,6分别为六边形ABCDEF的外角,求1+2+3+4+5+6的值 分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度? 解:1+BAF=180 2+ABC=180 3+BAD=180 4+CDE=180 5+DEF=180 6+EFA=180 1+BAF+2+ABC+3+BAD+4+CDE+5+DEF+6+EFA=6180 又1+2+3+4+5+6=4180 BAF+ABC+BAD+CDE+DEF+EFA=6180-4180=360 这就是说,六边形形的外角和为360。 如果把六边形换成n边形可以得到同样的结果: n边形的外角和等于360。 四、课堂练习 课本24页练习1、2、3题。 五、课堂小结 n边形的内角和是多少度? n边形的外角和是多少度? 六、布置作业:25页习题11.3 第4、5、6、题。 七、教学反思: 八、板书设计:
链接地址:https://www.31ppt.com/p-3491082.html