多元函数微分学及其应用归纳总结.doc
《多元函数微分学及其应用归纳总结.doc》由会员分享,可在线阅读,更多相关《多元函数微分学及其应用归纳总结.doc(13页珍藏版)》请在三一办公上搜索。
1、第八章 多元函数微分法及其应用一、多元函数的基本概念1、平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念2、多元函数的极限 (或)的定义 掌握判定多元函数极限不存在的方法:(1)令沿趋向,若极限值与k有关,则可断言函数极限不存在;(2)找两种不同趋近方式,若存在,但两者不相等,此时也可断言极限不存在。 多元函数的极限的运算法则(包括和差积商,连续函数的和差积商,等价无穷小替换,夹逼法则等)与一元类似:例1用定义证明例2(03年期末考试 三、1,5分)当时,函数的极限是否存在?证明你的结论。例3 设,讨论是否存在?例4(07年期末考试 一、2,3分)设,讨论是否存在?例5求3、
2、多元函数的连续性 一切多元初等函数在其定义区域内都是连续的,定义区域是指包含在定义域内的区域或闭区域。 在定义区域内的连续点求极限可用“代入法”例1 讨论函数在(0,0)处的连续性。例2 (06年期末考试 十一,4分)试证在点(0,0)不连续,但存在一阶偏导数。例3求 例44、了解闭区域上商连续函数的性质:有界性,最值定理,介值定理二、多元函数的偏导数1、 二元函数关于的一阶偏导数的定义(二元以上类似定义)如果极限存在,则有(相当于把y看成常数!所以求偏导数本质是求一元函数的导数。)如果极限存在,则有对于分段函数,在分界点的偏导数要用定义求。例1(08年期末考试 一、3,4分)已知,则 例2
3、(06年期末考试 十一,4分)试证在点(0,0)不连续,但存在一阶偏导数。例3 设,求。例4 设,求。 例5(03年期末考试,一、2,3分) 设,则在(1,2)的值为( )。2、 二元函数关于的高阶偏导数(二元以上类似定义), 定理:若两个混合二阶偏导数在区域D内连续,则有。例1设,其中为常数,求:。例2设,求。3、在点偏导数存在在点连续(07年,04年,02年等)4、偏导数的几何意义:表示曲线在点处的切线与x轴正向的夹角。三、全微分1、在点可微分的判定方法若,则可判定在点可微分。其中例1(08年期末考试 十二、6分)证明函数在(0,0)处可微,但偏导数在(0,0)处不连续。例2 (07年期末
4、考试 七、6分),证明:(1)函数在(0,0)处偏导数存在;(2)函数在(0,0)处不可微。2、全微分的计算方法若在可微,则有其中的求法可以结合复合函数或者隐函数求导。例1(08年期末考试,一,1,4分) 设,则 例2(07,04年期末考试,二,1,3分)设求。例3 (06年期末考试,二、2,3分)设,则 例4 (03年期末考试,二、2,3分)函数在点(1,0,1)处的全微分为 例5设,求函数:对变量的全微分。3、多元函数的全微分与连续,可偏导之间的关系(07年,04年,02年等) 一阶偏导数在连续在可微 在连续在有极限 在可微在的一阶偏导数存在 在可微在的方向导数存在四、多元复合函数求导法则
5、1、链式求导法则:变量树状图 法则(1) (2) zuxyxy(3) 例1 (08年期末考试,七,7分)设,具有连续二阶偏导数,求。例2 (08年期末考试,十一,6分)设是由方程所确定的函数,其中可导,求。例3 (07年期末考试,八,7分)设,具有连续二阶偏导数,求。例4 (06年期末考试,一、1,3分)设,可导,则( )。例5 (04年期末考试,三、1,8分)设可微,方程,其中确定了是的二元可微隐函数,试证明。例6 (03年期末考试,三、2,5分)设具有连续偏导数,证明方程所确定的函数满足。例7 记,具有连续二阶偏导数,求,。例8 设,而,求和。例9 设,而,则。例10 设,又具有连续的二阶
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多元 函数 微分学 及其 应用 归纳 总结
链接地址:https://www.31ppt.com/p-3439283.html