会计硕士MPACC考研数学大纲变化对比及复习重点.doc
《会计硕士MPACC考研数学大纲变化对比及复习重点.doc》由会员分享,可在线阅读,更多相关《会计硕士MPACC考研数学大纲变化对比及复习重点.doc(20页珍藏版)》请在三一办公上搜索。
1、 会计硕士MPAcc:2013考研数学大纲变化对比及复习重点凯程在会计硕士方面有五年辅导经验,开设有会计硕士暑期集训营,百日冲刺集训营,会计硕士飞翔集训班,会计硕士定向保录班,凯程会计硕士考研命中率和上线率极高,在业内具有领先优势。欢迎咨询凯程教育,或者到凯程学校实地考察。 2013年与2012年考研数学(三)大纲变化对比及复习重点提示科目章节大纲内容2012考研数学(三)大纲2013考研数学(三)大纲大纲对比复习重点提示高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性单调性周期性和奇偶性 复合函数反函数分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
2、 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质函数的概念及表示法 函数的有界性单调性周期性和奇偶性 复合函数反函数分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个
3、重要极限: 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质无变化1.函数是微积分研究的对象,函数这部分的重点是:复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数的概念等;2.极限是研究微积分的工具,极限是本章的重点内容,既要准确理解极限的概念、性质和极限存在的条件,又要能准确的求出各种极限,掌握求极限的各种方法。3.连续性是可导性与可积性的重要条件,要掌握判断函数连续性与间断点类型的方法,特别是分段函数在分界点处的连续性,理解闭区间上连续函数的性质。考试要求1理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系 2了解函数的有界性单调性
4、周期性和奇偶性 3理解复合函数及分段函数的概念,了解反函数及隐函数的概念 4掌握基本初等函数的性质及其图形,了解初等函数的概念 5了解数列极限和函数极限(包括左极限与右极限)的概念 6了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法 7理解无穷小的概念和基本性质掌握无穷小量的比较方法了解无穷大量的概念及其与无穷小量的关系 8理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型 9了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理介值定理),并会应用这些性质1理解函数的概念,掌握函数的表示法,会建立
5、应用问题的函数关系 2了解函数的有界性单调性周期性和奇偶性 3理解复合函数及分段函数的概念,了解反函数及隐函数的概念 4掌握基本初等函数的性质及其图形,了解初等函数的概念 5了解数列极限和函数极限(包括左极限与右极限)的概念 6了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法 7理解无穷小的概念和基本性质掌握无穷小量的比较方法了解无穷大量的概念及其与无穷小量的关系 8理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型 9了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理介值定理),并会应用这些性
6、质无变化二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(LHospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性拐点及渐近线 函数图形的描绘 函数的最大值与最小值导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理
7、洛必达(LHospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性拐点及渐近线 函数图形的描绘 函数的最大值与最小值无变化1.一元函数的导数与微分的概念及其各种计算方法是微积分学中最基本又是最重要的概念与计算之一,重点理解函数的可导性与连续性之间的关系掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数. 2.微分中值定理是微分学中最重要的理论部分,重点掌握罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,会用导数来讨论函数的单调性、极值点、凹凸性与拐点,
8、掌握求最值的方法并会解简单的应用题。考试要求1理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程 2掌握基本初等函数的导数公式导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数 3了解高阶导数的概念,会求简单函数的高阶导数 4了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分 5理解罗尔(Rolle)定理拉格朗日( Lagrange)中值定理了解泰勒定理柯西(Cauchy)中值定理,掌握这四个定理的简单应用 6会用洛必达法则求极限 7掌握函数单调性的判别方法,
9、了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用 8会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线 9会描述简单函数的图形1理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程 2掌握基本初等函数的导数公式导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数 3了解高阶导数的概念,会求简单函数的高阶导数 4了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分
10、 5理解罗尔(Rolle)定理拉格朗日( Lagrange)中值定理了解泰勒定理柯西(Cauchy)中值定理,掌握这四个定理的简单应用 6会用洛必达法则求极限 7掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用 8会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线 9会描述简单函数的图形无变化三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newto
11、n- Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用无变化不定积分与定积分是积分学的基础,在积分的计算中换元积分和分部积分法是最基本的方法,需要熟练掌握,理解积分上限的函数,会求它的导数,掌握牛顿莱布尼茨公式掌握用定积分表达和计算一些几何量及经济问题考试要求1理解原函数与不定积分的概念,掌握不定积分的基
12、本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法 2了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法 3会利用定积分计算平面图形的面积旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题 4了解反常积分的概念,会计算反常积分1理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法 2了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法 3会利用定积分计算
13、平面图形的面积旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题 4了解反常积分的概念,会计算反常积分无变化四、多元函数微积分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值最大值和最小值 二重积分的概念基本性质和计算 无界区域上简单的反常二重积分多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全
14、微分 多元函数的极值和条件极值最大值和最小值 二重积分的概念基本性质和计算 无界区域上简单的反常二重积分无变化1.多元函数重点研究的是二元函数,重点掌握二元函数的偏导数、可微性、全微分,了解全微分存在的必要条件及充分条件,会求多元复合函数及隐函数的一阶与二阶偏导数或全微分;2.多元函数微分学的一个重要应用时多元函数的最值问题,包括简单的极值问题与条件极值问;3.多元函数积分学中重点掌握二重积分的计算。考试要求1了解多元函数的概念,了解二元函数的几何意义 2了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质 3了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会
15、求全微分,会求多元隐函数的偏导数 4了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题 5了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标极坐标)了解无界区域上较简单的反常二重积分并会计算1了解多元函数的概念,了解二元函数的几何意义 2了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质 3了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数 4了解多元函数极值和条
16、件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题 5了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标极坐标)了解无界区域上较简单的反常二重积分并会计算无变化五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与 级数及其收敛性正项级数收敛性的判别法任意项级杰的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数
17、的和函数的求法初等函数的幂级数展开式常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与 级数及其收敛性正项级数收敛性的判别法任意项级杰的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式无变化无穷级数包含常数项级数与函数项级数,要熟练掌握常数项级数敛散性的判定,对一般的函数项级数要掌握其收敛域的求法,对幂级数要掌握其收敛性的特点,收敛半径与收敛域的求法,和函数的性质。考试要求1了解级数的收敛与发散收敛级数的和的概念 2了解级数的基本性质
18、和级数收敛的必要条件,掌握几何级数及 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法 3了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法 4会求幂级数的收敛半径、收敛区间及收敛域 5了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数 6了解 及 的麦克劳林(Maclaurin)展开式1了解级数的收敛与发散收敛级数的和的概念 2了解级数的基本性质和级数收敛的必要条件,掌握几何级数及 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法 3了解任意项级数绝对收敛
19、与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法 4会求幂级数的收敛半径、收敛区间及收敛域 5了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数 6了解 及 的麦克劳林(Maclaurin)展开式无变化六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用常微分方程的基本概念变量可分离的微分方程齐次微分
20、方程一阶线性微分方程线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用无变化常微分方程研究的对象就是常微分方程解的性质与求法,需要重点掌握如何求解不同类型的微分方程,主要包括一阶线性微分方程和二阶常系数线性微分方程,理解线性微分方程解的性质和解的结构,对于微分方程的应用问题要会建立方程。考试要求1了解微分方程及其阶、解、通解、初始条件和特解等概念 2掌握变量可分离的微分方程齐次微分方程和一阶线性微分方程的求解方法 3会解二阶常系数齐次线性微分方程 4了解线性微分方程解的性质及解
21、的结构定理,会解自由项为多项式指数函数正弦函数余弦函数的二阶常系数非齐次线性微分方程 5了解差分与差分方程及其通解与特解等概念 6了解一阶常系数线性差分方程的求解方法 7会用微分方程求解简单的经济应用问题1了解微分方程及其阶、解、通解、初始条件和特解等概念 2掌握变量可分离的微分方程齐次微分方程和一阶线性微分方程的求解方法 3会解二阶常系数齐次线性微分方程 4了解线性微分方程解的性质及解的结构定理,会解自由项为多项式指数函数正弦函数余弦函数的二阶常系数非齐次线性微分方程 5了解差分与差分方程及其通解与特解等概念 6了解一阶常系数线性差分方程的求解方法 7会用微分方程求解简单的经济应用问题无变化
22、线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理行列式的概念和基本性质行列式按行(列)展开定理无变化行列式的重点是计算,应当理解n阶行列式的概念、掌握行列式的性质考试要求1了解行列式的概念,掌握行列式的性质 2会应用行列式的性质和行列式按行(列)展开定理计算行列式1了解行列式的概念,掌握行列式的性质 2会应用行列式的性质和行列式按行(列)展开定理计算行列式无变化二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价 分块矩阵及其运算矩阵的概念矩阵的线性运
23、算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价 分块矩阵及其运算无变化矩阵是线性代数的核心,矩阵的概念、运算及理论贯穿线性代数的始终,要熟练掌握矩阵的运算、理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法考试要求1理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质 2掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 会计 硕士 MPACC 考研 数学 大纲 变化 对比 复习 重点
链接地址:https://www.31ppt.com/p-3439072.html