实验三报告实验三 Kmeans算法实现.docx
《实验三报告实验三 Kmeans算法实现.docx》由会员分享,可在线阅读,更多相关《实验三报告实验三 Kmeans算法实现.docx(5页珍藏版)》请在三一办公上搜索。
1、实验三报告实验三 Kmeans算法实现北华大学开放实验报告 实验名称:实验三 Kmeans算法实现 所属课程: 模式识别 班 级: 信息101 学 号: 36 姓 名: 张慧 实验三、K_means算法实现 一、 背景知识简介: Kmeans算法是一种经典的聚类算法,在模式识别中得到了广泛的应用,基于Kmeans的变种算法也有很多,模糊Kmeans、分层Kmeans等。 Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定标记样本调整类别中心向
2、量。K均值只考虑了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 二、 k-means聚类算法 k-means 算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”来进行计算的。 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。 算法思路:
3、 首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度,分别将它们分配给与其最相似的聚类;然 后再计算每个所获新聚类的聚类中心;不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 该算法的最大优势在于简洁和快速。算法的关键在于初始中心的选择和距离公式。 算法步骤: step.1-初始化距离K个聚类的质心 step.2-计算所有数据样本与每个质心的欧氏距离,将数据样本加入与其欧氏距离最短的那个质心的簇中 step.3-计算现在每个簇的质
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实验三报告实验三 Kmeans算法实现 实验 报告 Kmeans 算法 实现
链接地址:https://www.31ppt.com/p-3436113.html