大学物理第四五六章习题参考答案.docx
《大学物理第四五六章习题参考答案.docx》由会员分享,可在线阅读,更多相关《大学物理第四五六章习题参考答案.docx(109页珍藏版)》请在三一办公上搜索。
1、大学物理第四五六章习题参考答案修改5.18、5.23 6.18 第4章 机械振动 4.1基本要求 1掌握描述简谐振动的振幅、周期、频率、相位和初相位的物理意义及之间的相互关系 2掌握描述简谐振动的解析法、旋转矢量法和图线表示法,并会用于简谐振动规律的讨论和分析 3掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义 4理解同方向、同频率简谐振动的合成规律,了解拍和相互垂直简谐振动合成的特点 4.2基本概念 1简谐振动 离开平衡位置的位移按余弦函数规律随时间变化的运动称为简谐振动。 简谐振动的运动方程 x=Acos(wt+j) 2
2、振幅A 作简谐振动的物体的最大位置坐标的绝对值。 3周期T 作简谐振动的物体完成一次全振动所需的时间。 4频率n 单位时间内完成的振动次数,周期与频率互为倒数,即T=1n5圆频率w 作简谐振动的物体在2p秒内完成振动的次数,它与频率的关系为2pw=2pn T6相位和初相位 简谐振动的运动方程中wt+j项称为相位,它决定着作简谐振动的物体状态;t=0时的相位称为初相位j 7简谐振动的能量 作简谐振动的系统具有动能和势能。 11弹性势能Ep=kx2=kA2cos2(wt+j) 2212112mv=m-wAsin(wt+j)=mw2A2sin2(wt+j) 22211弹簧振子系统的机械能为E=Ek+
3、Ep=mw2A2=kA2 22动能Ek=8阻尼振动 振动系统因受阻尼力作用,振幅不断减小。 9受迫振动 系统在周期性外力作用下的振动。周期性外力称为驱动力。 10共振 驱动力的角频率为某一值时,受迫振动的振幅达到极大值的现象。 4.3基本规律 1一个孤立的简谐振动系统的能量是守恒的 物体做简谐振动时,其动能和势能都随时间做周期性变化,位移最大时,势能达到最大值,动能为零;物体通过平衡位置时,势能为零,动能达到最大值,但其总机械能却保持不变,且机械能与振幅的平方成正比。图4.1表示了弹簧振子的动能和势能随时间的变化。为了便于将此变化与位移随时间的变化相比较,在下面画了x-t曲线,由图可以看出,动
4、能和势能的变化频率是弹簧振子振动频率的两倍。 E1E=kA22EkOEptxOt 图4.1 弹簧振子的动能和势能随时间的变化 2简谐振动的合成 若一个质点同时参与了两个同方向、同频率的简谐振动,即 x1=A1cos(wt+j1) x2=A2cos(wt+j2) 合振动仍是一个角频率为w的简谐振动。 合位移x=x1+x2=Acos(wt+j) 2+2A1A2cos(j2-j1) 合振动的振幅A=A12+A2合振动的初相tanj=A1sinj1+A2sinj2A1cosj1+A2cosj2振动加强:Dj=j2-j1=2k, (k=0 , 1 , 2,L) A=A1+A2 振动减弱:Dj=j2-j1
5、=(2k-1), (k= 1, 2, 3L) A=A1-A2 当j2-j1取其他值时 A1+A2AA1-A2 若两个振动同方向,但不同频率,则合成振动不再是周期振动,而是振幅随时间周期性变化的振动。 若两振动的振动方向相互垂直,频率相同。一般情况下,合成振动轨迹为一椭圆。 若两个相互垂直的振动频率不相同,且为简单比关系,则其合成振动的轨迹为封闭的曲线,曲线的具体形状取决于两个振动的频率比。若两频率比为无理数,则合成运动轨迹永不封闭。 4.4学习指导 1重点解析 简谐振动的运动学问题是本章的重点内容之一,主要有以下两种类型: 已知简谐振动表达式求有关物理量 已知运动情况或振动曲线建立简谐振动表达
6、式 对于类型主要采用比较法,就是把已知的振动表达式与简谐振动的一般表达式x=Acos(wt+j)加以比较,结合有关公式求得各物理量。 对于类型的解题方法,一般是根据题给的条件,求出描述简谐振动的三个特征量A、j、w,然后将这些量代入简谐振动的一般式,就得到要求的运动表达式。 其中角频率w由系统的性质决定,w2=km. 振幅A可由初始条件求出,A=x0+2v02w;或从振动曲线上直接看出。 初相j有两种解法,一是解析法,即从初始条件得到tanj=-v0,这里j有两个wx0值,必须根据条件去掉一个不合理的值;另一是旋转矢量法,正确画出振幅矢量图,这是求初相最简便且直观的方法。 例 如图4-2所示为
7、某质点作简谐振动的曲线。求该质点的振动方程。 分析:若要求质点的振动方程,必须求出三个特征量A、j、w。利用振动曲线可以看出A=410-2m,t=0时刻,质点位移x0=-用这些信息可以确定j、w。 解:方法1 解析法 t=0时,x0=-2A,于是有 22A 22A,t=0.5s时,x=0。利2x0=Acosj=-图4-2 3解得:j=p 4由t=0时刻对应的曲线斜率v0=-Awsinj0 dx0可知,所以质点速度v00,即: dt3所以j=-p 4为求w,先写出质点振动方程 3x=410-2cos(wt-p)m 4将t=0.5s,x=0代入上式得 cos(w3同样结合该点的速度方-p)=0,2
8、4图4-3 向可以得到w=p2,所以质点的振动方程是 p3x=410-2cos(t-p)m 24方法2:旋转矢量法 由振动曲线可知,t=0时刻,质点位移x0=-3转矢量如图4-3所示,由图可知j=-p。 42A,质点速度v00,对应的旋2t=0.5s时,x=0,v0。此运动状态对应矢量OP,即旋转矢量由t=0时的OM经0.5s转至OP,共转了质点的振动方程是 pp,w=4rads-1=rads-1 40.52pp3x=410-2cos(t-p)m 242难点释疑 疑难点1 旋转矢量 自Ox轴的原点O作一矢量A,使它的模等于振动的振幅A,并使矢量A在Oxy平面内绕点O作逆时针方向的匀角速转动,其
9、角速度与振动的角频率w相等,这个矢量就叫做旋转矢量。如图4-4所示。旋转矢量A的矢端在Ox轴上的投影点的运动,可表示物体在Ox轴上的简谐振动。旋转矢量A与简谐振动的物理量之间的对应关系如表4-1所示。 图4-4 表4-1 旋转矢量A与简谐振动的物理量之间的对应关系 旋转矢量是研究简谐振动的一种比较直观的方法,可以使运动的各个物理量表现得直观,运动过程显示得清晰,有助于简化简谐振动讨论中的数学处理。但必须指出,旋转矢量本身并不在作简谐振动,而是旋转矢量端点的投影点在作简谐振动。 问题:简谐振子从平衡位置运动到最远点所需的时间为所需的时间是T吗?走过该距离的一半4TT吗?振子从平衡位置出发经历时运
10、动的位移是多少? 88p解析 从平衡位置运动到最远点对应旋转矢量图4-5中的角度变化是,所需的2pT时间Dt= 2w4振子的速度v=-wAsin(wt+j)不是常数,振子做变速直线运动,所以走过该距TA。振子从平衡位置运动到处时,振幅82ppT矢量转过了的角度,即Dt= 66w12ATTA即振子从平衡位置运动到所用的时间是,而不是。振子从运动到平衡21282pT位置所用的时间是Dt=。 3w6T振子从平衡位置出发经历时运动的位移是 8离的一半所需的时间不是x=Acos(wTpp2-)=Acos(-)=A 8242图4-5 疑难点2 当一个弹簧振子的振幅加倍时,则振动周期、最大速度、质点受力最大
11、值和振动能量如何变化? 解析 弹簧振子的振幅一般由初始条件确定。振幅加倍时,振动周期不变,因为对于给定的弹簧振子系统其周期是一定的,即T=2pm;最大速度的表达式是kwA,所以振幅加倍时最大速度也加倍,质点受力最大值为f=kA,所以振幅加倍1时受力最大值也加倍;简谐振动系统中机械能守恒为E=kA2,所以振幅加倍2时振动能量变为原来4倍 4.5习题解答 4.1 两根轻弹簧和一质量为m的物体组成一振动系统,弹簧的劲度系数为k1和k2,串联后与物体相接,则此系统的固有频率为n等于 (A) (k1+k2)/m/(2p) k1 k2 m 习题4.1图 (B) k1k2/(k1+k2)m(2p) (C)
12、m/(k1+k2)(2p) (D) (k1+k2)/(k1k2m)/(2p) 解析:正确答案 两弹簧k1和k2串联后可等效为劲度系数k的弹簧,设k1和k2的形变量分别为x1和x2,k的形变量为 x,则有xx1+x2,亦即 111=+ kk1k2k=k1k2 k1+k2据此可确定系统的固有频率为 n=12pk=k1k2/(k1+k2)mm(2p) 4.2 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度q,然后由静止放手任其振动,从放手时开始计时。若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) (B)/2 (C) 0 (D) 解析:正确答案 由已知条件可知其初始时刻的
13、位移正向最大。利用旋转矢量图可知,初相相位是0。选 4.3 用余弦函数描述一简谐振动。已知振幅为A,周期为T,初相j=-动曲线为 p3,则振习题4.3图 解析:正确答案 pA由已知条件可知:初始时刻振动的位移是y=Acos(-)=,速度是32v=-wAsin(wt+j)=3wA,方向是向y轴正方向,则振动曲线上t=0时刻的斜2率是正值。 4.4 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒。则此简谐振动的振动方程为: 22x=2cos(pt+p)cm 3322x=2cos(pt-p)cm 3342x=2cos(pt-p)cm 3342x=2cos(pt+p)cm 33习题4
14、.4图 t=0j=2p3解析:正确答案 由振动图像可知,初始时刻质点的位移是-A,且向24pDj=3x/cm2y轴负方向运动,下图是其对应的旋转矢量图,由图可知,其初相位是p,振3A2动曲线上给出了质点从-到A的时间是1s,其对应的相位从p变化到2p,232p2p-3rads-1=4prads-1。 所以它的角速度w=1342简谐振动的振动方程为x=2cos(pt+p) 334.5 质点作简谐振动,已知振动周期为T,则其振动动能变化的周期是 (A) T/4 (B) T/2 (C) T (D) 2T 解析:正确答案 质点作简谐振动的动能表达式是Ek=简谐振动周期的1。 21可见其变化的周期是mw
15、2A2sin2(wt+j),24.6 设某人一条腿的质量为m,长为l,当他以一定频率行走时最舒适,试用一种简单的模型估算出该人行走最舒适的频率应为 12pg1l2p2g13l2pg12l2p3g 2l解析:正确答案 可以将人行走时腿的摆动当作复摆模型,这样人行走时最舒适的频率应是复摆的简谐振动频率。此人的一条腿可看成是一个质量为m,长为l的细长杆,它绕端J1l点的转动惯量J=ml2,根据复摆的周期公式T=2p,这里h=。故频率mgh23n=12p3g 2l4.7 图中所画的是两个简谐振动的振动曲线。若这两个简谐振动可叠加,则合成的余弦振动的初相为 3p 2p 1p 20 解析:正确答案 习题4
16、.7图 由振动曲线可知,这是两个同振动方向,同频率简谐振动,它们的相位差是p,Acos(wt)和x2=Acos(wt+p),它们的振幅不同,对于这样2A两个简谐振动,可用旋转矢量法,很方便求得合运动方程是x2=cos(wt+p)。 2运动方程分别是x1=4.8 质点作谐振动,周期为T,当它由平衡位置向x轴负方向运动时,从所需要的时间为 TTTT 46812A处到-A处这段路程2p3解析:正确答案 A处221对应的相位是p,位移是-A处对应的相位是p,所以这段路程的相位差是p,33已知条件结合对应的旋转矢量图,它由平衡位置向x轴负方向运动时在对应的时间是p3TT= 2p64.9 弹簧振子作简谐振
17、动,已知此振子势能的最大值为100J,当振子处于最大位移的一半时其动能为 25J 50J 75J 100J 解析:正确答案 物体做简谐振动时,振子势能的表达式是Ep=12kx,其动能和势能都随时间做2周期性变化,物体通过平衡位置时,势能为零,动能达到最大值;位移最大时,12kA,动能为零,但其总机械能却保持不变。当振子处于21A1最大位移的一半时其势能为Ep=k2=kA2,所以此时的动能是22811133Ek=kA2-kA2=kA2J=100J=75J。 28244势能达到最大值Ep=4.10一质点作简谐振动,速度最大值vm=0.05ms-1,振幅A=2cm。若令速度具有正最大值的那一时刻为t
18、=0,则振动表达式为 。 解析:y=0.02cos(2.5t)m 速度的最大值vm=Aw=0.05ms-1,A=0.02m,所以 w=vm0.05=2.5rads-1。 A0.02振动的一般表达式x=Acos(wt+j),现在只有初相位没确定,速度具有正最大值的时位于原点处,由旋转矢量法可知:j=0,振动表达式为y=0.02cos(2.5t)m 4.11已知一个谐振子的振动曲线如图所示,求:a、b、c、d、e各状态的相位分别为 。 dA2cba-A2e习题4.11图 pp2p4p、 3332结合旋转矢量图,振动曲线上的a、b、c、d、e对应旋转矢量图上的a、b、解析:0、pp2p4p、 333
19、24.12 一简谐振动的旋转矢量图如图所示,振幅矢量长2cm,则该简谐振动的初c、d、e,所以其相位分别是0、相为 ,振动方程为 。 解析:pp,x=0.02cos(pt+) 44振动方程的一般表达式是x=Acos(wt+j),j是指t=0时对应的相位,也是初相位。由图可知t=0时的角度pppt,所以该简谐振动的初相为。角速度是=p。习题4.12图 t44p代入振动方程可得x=0.02cos(pt+)。 44.13 一单摆的悬线长l=1.5m,在顶端固定点的竖直下方0.45m处有一小钉,如是图所示。设摆动很小,则单摆的左右两方振幅之比的近似值为 。 解析:0.84 左右摆动能量应相同,应有11
20、mw12A12=mw22A22,所22以A1w2l1.05=1=0.84 A2w1l21.54.14 质点按如下规律沿ox轴作简谐振动:x=0.1cos(8pt+2p)m,求此振动的周期、振幅、3习题4.13图 初相、速度最大值和加速度最大值。 解析:本题属于由运动方程求解简谐振动各特征量的问题,可采用比较法求解。即将已知的简谐运动方程与简谐运动方程的一般形式x=Acos(wt+j)作比较,即可求得各特征量,而速度和加速度的计算与质点运动学中由运动方程求解速度和加速度的计算方法相同。 将该简谐振动的表达式与简谐运动方程的一般形式x=Acos(wt+j)作比较后可得:周期是0.25s, 振幅是0
21、.1m, 初相位是加速度最大值am=Aw2=63.17ms-2 2p,速度最大值vm=Aw=2.51ms-1,34.15 质点的振动曲线如图所示。试求: 振动表达式 点P对应的相位 到达点P对应位置所需时间。 解析:根据振动曲线对应的旋转振幅矢量可知,初相j0=-为Dj=p3习题4.15图 ,从t=0到t=1s时间内相位差p5pDj5p,所以角频率为w= -(-)=236Dt65p可得振动表达式为y=0.06cos(pt-)m 63(2)P点相对应的相位为0。 p0-(-)Dj3=0.4s (3)到达P点所需时间为Dt=5pw64.16 沿x轴作简谐振动的小球,振幅A=0.04m,速度的最大值
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学物理 第四 五六章 习题 参考答案
链接地址:https://www.31ppt.com/p-3394972.html