深度学习下的图像视频处理技术课件.pptx
《深度学习下的图像视频处理技术课件.pptx》由会员分享,可在线阅读,更多相关《深度学习下的图像视频处理技术课件.pptx(117页珍藏版)》请在三一办公上搜索。
1、技术创新,变革未来深度学习下的图像视频处理技术,看得更清,看得更懂,目录,夜景增强图像视频去模糊视频超分辨率,1.夜景图像增强,Taking photos is easy,Amateur photographers typically create underexposed photos,Photo Enhancement is required,Image Enhancement,Input,“Auto Enhance”on iPhone,“Auto Tone”in Lightroom,Ours,Existing Photo Editing Tools,Retinex-based Metho
2、dsLIME:TIP 17WVM:CVPR 16JieP:ICCV 17 Learning-based MethodsHDRNet:SIGGRAPH 17White-Box:ACM TOG 18Distort-and-Recover:CVPR 18DPE:CVPR 18,Previous Work,Input,WVM CVPR16,JieP ICCV17,HDRNet Siggraph17,DPE CVPR18,White-Box TOG18,Distort-and-Recover CVPR18,Ours,Limitations of Previous Methods,Illumination
3、 maps for natural images typically have relatively simple forms with known priors.The model enables customizing the enhancement results by formulating constraints on the illumination.,Why This Model?,Advantage:Effective Learning and Efficient Learning,Network Architecture,Input,Nave Regression,Exper
4、t-retouched,Ablation Study,Motivation:The benchmark dataset is collected for enhancing general photos instead of underexposed photos,and contains a small number of underexposed images that cover limited lighting conditions.,OurDataset,Quantitative Comparison:OurDataset,Quantitative Comparison:MIT-Ad
5、obe FiveK,Visual Comparison:OurDataset,Input,JieP,HDRNet,DPE,White-box,Distort-and-Recover,Our result,Expert-retouched,Visual Comparison:MIT-Adobe FiveK,Input,JieP,HDRNet,DPE,White-box,Distort-and-Recover,Our result,Expert-retouched,More Comparison Results:User Study,Input,WVM,JieP,HDRNet,DPE,White-
6、Box,Distort-and-Recover,Our result,Limitaion,Input,Our result,演示者2019-05-08 03:51:53-Our work also exists some limitations,the first limitation is the region is almost black without any trace of texture.We can see the top two images.The second limitation is our method doent clear noise in the enhanc
7、ed result.,More Results,Input,White-box,Distort-and-Recover,Our result,Expert-retouched,JieP,HDRNet,DPE,More Results,Input,White-box,Distort-and-Recover,Our result,Expert-retouched,JieP,HDRNet,DPE,More Results,Input,White-box,Distort-and-Recover,Our result,Expert-retouched,JieP,HDRNet,DPE,More Resul
8、ts,Input,White-box,Distort-and-Recover,Our result,Expert-retouched,JieP,HDRNet,DPE,More Results,Input,WVM,JieP,HDRNet,DPE,White-Box,Distort-and-Recover,Our result,More Results,Input,WVM,JieP,HDRNet,DPE,White-Box,Distort-and-Recover,Our result,More Results,Our result,iPhone,Lightroom,Input,More Resul
9、ts,Our result,iPhone,Lightroom,Input,2.视频超分辨率,Old and FundamentalSeveral decades ago Huang et al,1984 near recent Many ApplicationsHD video generation from low-res sources,Motivation,演示者2019-05-08 03:51:55-The target of video super-resolution is to increase the resolution of videos with rich details
10、.clickIt is an old and fundamental problem that has been studied since several decades ago.clickVideo SR enables many applications,such as High-definition video generation from low-res sources.click,32,Old and FundamentalSeveral decades ago Huang et al,1984 near recent Many ApplicationsHD video gene
11、ration from low-res sourcesVideo enhancement with details,Motivation,演示者2019-05-08 03:51:55-clickVideo enhancement with details.In this example,characters on the roof and textures of the tree in SR result are much clearer then input.click,33,Old and FundamentalSeveral decades ago Huang et al,1984 ne
12、ar recent Many ApplicationsHD video generation from low-res sourcesVideo enhancement with detailsText/object recognition in surveillance videos,Motivation,演示者2019-05-08 03:51:55-clickAnd also,it can benefit text or object recognition in low-quality surveillance videos.In this example,numbers on the
13、car become recognizable only in the super-resolved result.,34,Image SRTraditional:Freeman et al,2002,Glasner et al,2009,Yang et al,2010,etc.CNN-based:SRCNN Dong et al,2014,VDSR Kim et al,2016,FSRCNN Dong et al,2016,etc.Video SRTraditional:3DSKR Takeda et al,2009,BayesSR Liu et al,2011,MFSR Ma et al,
14、2015,etc.CNN-based:DESR Liao et al,2015,VSRNet Kappeler,et al,2016,Caballeroet al,2016,etc.,35,Previous Work,演示者2019-05-08 03:51:56-Previously,lots of work and methods have been proposed in super-resolution.clickWe list several representative methods here.,EffectivenessHow to make good use of multip
15、le frames?,Remaining Challenges,39,Data from Vid4 Ce Liu et al.,Bicubic x4,Misalignment Large motion Occlusion,演示者2019-05-08 03:51:56-Although video sr has long been studied,there are still remaining challenges in this task.clickThe most important one is effectiveness.clickHow to make good use of mu
16、ltiple frames?clickclickAs shown in this example,objects in neighboring frames are not aligned.And in some extreme cases,there even exist large motion or occlusion,which are very hard to handle.So are multiple frames useful or harmful to super-resolution?,EffectivenessHow to make good use of multipl
17、e frames?Are the generated details real?,Remaining Challenges,40,Image SR,Bicubic x4,演示者2019-05-08 03:51:56-clickOn the other hand,are the generated details real details?clickclickCNN-based SR methods incorporate external data.Using only one frame,they can also produce sharp structures.In this examp
18、le,on the right-hand-side,one SR method generates some clear window patterns on the building,clickbut they are far from real on the left.The problem is,details from external data,may not be true for input image.,EffectivenessHow to make good use of multiple frames?Are the generated details real?,Rem
19、aining Challenges,Image SR,Truth,演示者2019-05-08 03:51:56-clickOn the other hand,are the generated details real details?clickclickCNN-based SR methods incorporate external data.Using only one frame,they can also produce sharp structures.In this example,on the right-hand-side,one SR method generates so
20、me clear window patterns on the building,clickbut they are far from real on the left.The problem is,details from external data,may not be true for input image.,38,EffectivenessHow to make good use of multiple frames?Are the generated details real?Model IssuesOne model for one setting,Remaining Chall
21、enges,VDSR Kim et al.,2016,ESPCN Shi et al.,2016,VSRNet Kappeler et al,2016,演示者2019-05-08 03:51:56-clickThere are also model issues in current methods.clickFor all recent CNN-based SR methods,model parameters are fixed for certain scale factors,or number of frames.If you want to change scale factors
22、,you need to change network configuration and train another one.,39,EffectivenessHow to make good use of multiple frames?Are the generated details real?Model IssuesOne model for one setting Intensive parameter tuning Slow,40,Remaining Challenges,演示者2019-05-08 03:51:56-click clickAnd most traditional
23、 video SR methods involve intensive parameter tuning and may be slow.All the issues mentioned above prevent them from practical usage.,AdvantagesBetter use of sub-pixel motionPromising results both visually and quantitativelyFully Scalable Arbitrary input size Arbitrary scale factorArbitrary tempora
24、l frames,41,OurMethod,演示者2019-05-08 03:51:57-The goals of our method are as follows.clickWe are trying to make better use of sub-pixel motion between frames and produce high-quality results with real details.clickWe also hope the designed framework be fully scalable,in terms of input image size,scal
25、e factors and frame number.click,45,Data from Vid4 Ce Liu et al.,演示者2019-05-08 03:51:57-Here is one video example.Characters,numbers and textures are hard to recognize in bicubic result.And ours results are much better and clearer.,Motion Estimation,OurMethod,0,ME,0,演示者2019-05-08 03:51:57-Due to tim
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 深度 学习 图像 视频 处理 技术 课件

链接地址:https://www.31ppt.com/p-3389647.html