第三章纳维斯托克斯方程组课件.ppt
《第三章纳维斯托克斯方程组课件.ppt》由会员分享,可在线阅读,更多相关《第三章纳维斯托克斯方程组课件.ppt(59页珍藏版)》请在三一办公上搜索。
1、第三章 纳维-斯托克斯方程组,迄今得到的精确解几乎都是对不可压常值物性的流体做出的,这种流体的密度、粘性系数和热传导系数为常数。这时不需将能量方程与质量和动量方程耦合,可在解得速度、压力后单独求解温度(2-4)在第七章将说明,在高雷诺数下流体运动将变得不稳定,可能最终转变为湍流。下面将要讨论的这些精确解尽管在高雷诺数下其数学解析关系仍是正确的,但这种解是不稳定的,因而物理上是不存在的。所以这些精确解只对低雷诺数有效,即本质上是层流解。在开始讨论真正的精确解之前还应附带指出,不可压位势流的解也可看成是纳维-斯托克斯方程组的精确解,因为这时位势函数也使粘性项变为零。,但是位势解一般不能满足无滑移边
2、界条件,因为,若在固壁边界处保证法向速度为零,则由位势函数可决定其切向分速,因而一般情况下不能保证为零。所以,不能把位势流看成是纳维-斯托克斯方程的有物理意义的解。但也有例外情况,当固体边界运动时,位势函数可能构成纳维-斯托克斯方程的有实际意义的解(见3-3)。,本章讨论的精确解包括两大类。第一类是解析解,即未知函数完全由自变量解析地描述,且描述关系中不再包含导数或积分号。第二类是相似解,它在二维(包括轴对称)问题时可以化成一维问题,即可由常微分方程(组)的解表示。在所得出的这些常微分方程(组)中,有些至今未找到解析解,而只有数值解。由于这些常微分方程(组)具有通用性,其数值解也有通用性,故常
3、列表给出。,3-1 平行定常流动中的 速度分布,1.二维泊肃叶流动,2.库埃特流动,这是另一种平行直壁之间的流动,其中一个直壁静止不动,另一直壁在自身所在平面内沿流向移动(图3.1.2)。这时方程(3.1.3)仍然成立,因而式(3.1.5)也成立,但边界条件应改为,这种特殊情况称为简单库埃特流动,即流体完全由运动壁面通过粘性力而拖动。一般的库埃特流动是在这简单流动上迭加一个由式(3.1.6)描写的有压力梯度的流动。压力梯度的影响与如下的无量纲压力梯度B有关,图(3.1.2)上表示出各种压力梯度下的速度分布。对于B0,即压力沿流动方向下降,称为顺压力梯度,在整个槽道内速度为正值。当B0,压力沿流
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三 章纳维 斯托 方程组 课件
链接地址:https://www.31ppt.com/p-3340764.html