初中所有运算规律或公式.docx
《初中所有运算规律或公式.docx》由会员分享,可在线阅读,更多相关《初中所有运算规律或公式.docx(9页珍藏版)》请在三一办公上搜索。
1、初中所有运算规律或公式初中所有运算规律或公式 一、 数 正数:正数大于0 负数:负数小于0 0既不是正数,也不是负数;正数大于负数 整数包括:正整数,0,负整数 分数包括:正分数,负分数 有理数包括:整数,分数/有限小数,无限循环小数 数轴:在直线上取一点表示0,选取单位长度,规定直线上向右的方向为正方向 任何一个有理数都可以用数轴上的一个点表示,点和数是一一对应的 两个数只有符号不同,其中一个数为另一个的相反数;两个互为相反数 0的相反数就是0 在数轴上,表示互为相反数的两个点,位于原点两侧,且与原点距离相等 数轴上的两个点表示的数,右边的总比左边的大 绝对值:数轴上,一个数所对应的点与原点
2、的距离 正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0 两个负数比较大小,绝对值大的反而小 有理数加法法则:同号相加,不变符号,绝对值相加 异号相加,绝对值相等得0;不等,符合和绝对值大的相同,绝对值相减 一个数加0,仍是这个数 加法交换律:A+B=B+A 加法结合律:(A+B)+C=A + (B+C) 有理数减法法则:减去一个数,等于加上这个数的相反数 有理数乘法法则:两数相乘,同号得正,异号的负,绝对值相乘;任何数与0相乘,积为0 乘积为1的两个有理数互为倒数;0没有倒数 乘法交换律:AB=BA 乘法结合律:(AB)C=A (BC) 乘法分配律:A (B+C) =AB+AC
3、 有理数除法法则:两个有理数相除,同号得正,异号的负,绝对值相除 0除以任何非0的数都得0;0不能做除数 乘方:求n个相同因数a的积的运算;结果叫幂;a是底数;n是指数;an读作a的n次幂 有理数混和运算法则:先算乘方,再乘除,后加减;括号里的先算 无理数:无限不循环小数,有正负之分。 算数平方根:一个正数x的平方等于a,即x2a,则x是a的算数平方根,读作“根号a” 0的算数平方根是0 平方根:一个数x的平方根等于a,即x2a,则x是a的平方根 一个正数有两个平方根,且互为相反数;0只有一个,是它本身;负数没有平方根 开平方:求一个数的平方根的运算;a叫做被开方数 立方根:一个数x的立方等于
4、a,即x3a,则x是a的立方根 每个数只有一个立方根,正数的是正数;0的是0;负数的是负数 开立方:求一个数的立方根的运算;a叫做被开方数 实数:有理数和无理数的统称,包括有理数,无理数。相反数、倒数、绝对值的意义相同和有理数的。实数的运算法则和有理数相同。计算后出现带根号的无理数要化简,使被开方数不含分母和开得尽的因数 二、式 代数式:用基本运算符号连接数字或字母的式子;单独的数字或字母也是代数式 单项式:数字和字母的积;单独的数字或字母也是单项式;数字因数叫做单项式的系数 多项式:几个单项式的和;每个单项式叫做多项式的项,不含字母的叫常数项 单项式的次数:一个单项式中,所有字母的指数和;单
5、独的一个非零数的次数是0 多项的次数:次数最高的项的次数 同类项:所含字母相同,并且相同字母的指数也相同的项 合并同类项:把同类项合并成一项;合并同类项时,系数相加,字母和字母的指数不变 去括号法则:括号前面是加号,去括号运算符号不变 括号前面是减号,去括号运算符号变 多重括号,由里面的括号开始去 整式:单项式和多项式的统称 整式加减运算:先去括号,再合并同类项,知道式子最简 同底数幂的乘法:同底数幂相乘,底数不变,指数相加,如amanam+n 幂的乘方:幂的乘方,底数不变,指数相乘,如(am)namn 积的乘方:积的乘方等于积中每个因数乘方的积,如(ab)nanbn 同底数幂的除法:同底数幂
6、相除,底数不变,指数相减,如amnamn;a01;ap1/ap 整式的乘方:单项式与单项式,把系数、相同字母的幂分别相加,其余字母连同其指数不变,作为积的因式 单项式与多项式,根据分配律用单项式去成多项式的每一项,再把积相加 多项式与多项式,先用一个多项式的每一项乘另一个的每一项,再把积相加 平方差公式:两数和与这两数差的积,等于它们的平方差(ab)a2-b2 完全平方公式:2(ba)2a22abb2 2(ab)2a22abb2 整式除法:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式 多项式除以单项式,先把多项式的每一项分
7、别除以单项式,再把所得商相加 分解因式:把一个多项式化成几个整式的积的形式 公因式:多项式各项都含有的相同因式 提公因式:多项式的各项含有公因式,把这个公因式提出来,将多项式化成两个因式的乘积 完全平方式:形如a22abb2和a22abb2的式子 运用公式法:把乘法公式反过来,用来把某些多项式分解因式 分式:整式A除以整式B,表示成A/B。A为分式的分子;B为分式的分母 分式的基本性质:分式的分子与分母都乘以同一个不等于0的整式,分式值不变 约分:把一个分式的分子和分母的公因式约去的变形 最简分式:分子和分母没有公因式的分式 分式乘除法法则:分式相乘,分子相乘作分子,分母相乘作分母 分式相除,
8、把除式的分子和分母颠倒位置后再与被除式相乘 分式加减法则:同分母分式加减,分母不变,分子相加;异分式先通分,再加减 通分:根据分式的基本性质,异分母分式化为同分母分式的过程;通分时常取最简公分母 分式方程:分母中含有未知数的方程 增根:使原分式方程的分母为0的原方程的根;解分式方程必须检验 三、方程 等式:用等号表示相等关系的式子;等式具有传递性 方程:含有未知数的等式 一元一次方程:一个方程中,只含一个未知数,且未知数的指数为1的方程 等式性质:等式两边同时加上同一个代数式,结果还是等式 等式两边同时乘以同一个数,结果还是等式 移项:从方程一边移到另一边的变形 二元一次方程:含有两个未知数,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 所有 运算 规律 公式
链接地址:https://www.31ppt.com/p-3325706.html