初一数学研究性学习报告.docx
《初一数学研究性学习报告.docx》由会员分享,可在线阅读,更多相关《初一数学研究性学习报告.docx(9页珍藏版)》请在三一办公上搜索。
1、初一数学研究性学习报告 篇一:数学研究性学习报告 如图: 图1图 2 如图1,我国古代一般都把直角三角形中,短的一条直 角边叫做“勾”,长的一条直角边叫做“股”,斜边叫做 “弦”。所以,我国古代把直角边与斜边关系所形成的定理,叫做勾股定理 图中的直角三角形abc中,设 勾ab=3,股bc=4,弦ac=5。按照勾股定理,三条边的关 系为: 3242=52 所以如果把一个直角三角形的两条直角边分别记为a、b,把斜边记为c,那么它们之间的关 系式是: a2+b2=c2 即在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。 这就是我国最古老的数学书籍周髀算经一开始就指出的: “勾三、股四
2、、弦五”。这是直角三角形的三条边长都是整数时的例证。 古希腊数学家毕达哥拉斯也证明了这个定理。所以在国外,常把这个定理称为毕达哥拉斯定 理。 勾股定理在中国又称为商高定理,在外国称为毕达哥拉斯定理。为什么一个定理有这么 多名称呢?商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国 古代大约是战国时期西汉的数学著作周髀算经中记录着商高同周公的一段对话。商高说:?故折矩,勾广三,股修四,经隅五。什么是勾、股呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为勾,由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作商高定理。毕达哥拉斯是古希腊数学家,他是公元前五世纪
3、的人,比商高晚出生五百多年。希腊另一位数学家欧几里德在编著几何原本时,认为这个定理是 毕达哥达斯最早发现的,所以他就把这个定理称为毕达哥拉斯定理,以后就流传开了。 勾股定理的应用非常广泛。我国战国时期另一部古籍路史后记十二注中就有这样的记载:禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。延长cb到h,使ch=ab, 以c为顶点, ch为一边,作gch=cab,且使 cg=ac,以ac,cg为两边, 过
4、g做gdac, 过a做adcg,再过 d点作deab于e, 过g做gfde 与f gch=cab,abc=90 cab+acb=90 gchacb=90 既:acg=90 又gdac,adcg,且cg=ac 四边形acgd为正方形. ac=cg=gd=ad, acg=cgd=adg= cad. deab,b=90, dech,chgf于h hgc+hcg=90 acb+hcg=90 hgc=acb.可得:abcchg 同理可证得:abcchggfddea ch=gf=de=ab, df=ae=bc=gh ef=fh=hb=eb 四边形efhb为菱形 又gfde 四边形efhb为正方形 设ch=
5、gf=de=ab=a, df=ae=bc=gh=b, ac=cg=gd=ad=c s正方形efhb =(ab)=s正方形acgd4#8226;sacb =c2ab 整理:a22ab+b2=c22ab a2+b2=c2 既ab2+bc2=ac2 22在古希腊早期的数学家中,毕达哥拉斯的影响是最大的。他那传奇般的一生给后代留下了众多神奇的传说。 毕达哥拉斯生于萨摩斯(今希腊东部小岛),卒于他林敦(今意大利南部塔兰托)。他既是哲学家、数学家,又是天文学家。他在年轻时,根据当时富家子弟的惯例, 他曾到巴比伦和埃及去游学,因而直接受到东方文明的熏陶。回国后,毕达哥拉斯创建了政治、宗教、数学合一的秘密学术
6、团体,这个团体被后人称为毕达哥拉斯学派。这个学派的活动都是秘密的,笼罩着一种不可思议的神秘气氛。据说,每个新入学的学生都得宣誓严守秘密,并终身只加入这一学派。该学派还有一种习惯,就是将一切发明都归之于学派的领袖,而且秘而不宣,以致后人不知是何人在何时所发明的。 毕达哥拉斯定理(即勾股定理)是毕达哥拉斯的另一贡献,他的一个学生希帕索斯通过勾股定理发现了无理数,虽然这一发现打破了毕达哥拉斯宇宙万物皆为整数与整数之比的信条,并导致希帕索斯悲惨地死去,但该定理对数学的发展起到了巨大的促进作用。此外,毕达哥拉斯在音乐、天文、哲学方面也做出了一定贡献,首创地圆说,认为日、月、五星都是球体,浮悬在太空之中。
7、 小故事:西方的勾股定理之父毕达哥拉斯 篇二:初中数学研究性学习论文 初中数学研究性学习 随着我国教育事业的不断完善发展,素质教育也得到了进一步深入推广。在素质教育观下,“题海战术”虽然仍然是学生把握数学知识的基础,但是已经不再是主要途径,而是作为数学思想的一种辅助而已。因此,在新一轮课改的大背景下,初中数学教师应该引导学生采用各种有效的解题思路,让学生在把握题型规律的前提下,掌握数学解题方法,顺利实现数学问题的解答,以提高学生解题的效率和质量。而随着国家新课程改革的全面普及,研究性学习正逐渐成为我国中小学课程改革中的一大亮点和热点。研究性学习是现代社会迅速发展变化在教育教学上的体现,是时代发
8、展、社会进步的必然产物,它体现了现代教育中以人为本的理念,充分结合学生的个性与特长,让学生在学习中获得个性的解放。本次国家新课程改革确立了一以贯之的基本理念:转变学习方式,崇尚创造。 一、转变教育教学观念,正确认识研究性学习在初中数学中的地位 研究性学习把学生置于一种动态、开放、生动、多元的学习环境中,这种开放性学习,改变的不仅是学生学习的地点和内容,更重要的是提供给学生更多获取知识的方式和渠道,促使他们去关心现实、了解社会、体验人生、完善人格,促进自身的全面发展。学生只有实际亲历了认知的道路,才能获得知识。学生在研究性学习中,从直接面向简单规则和知识结论转向面向“复杂本身”,在丰富的、复杂的
9、真实情境中体悟知识、生成知识。在这一过程中学生倾入自己的热情、困惑、烦恼、欣喜等个人情感,用大量的附着知觉等隐性知识系统作支撑。在不确定的、复杂的情境中亲自探究,在过程中体验发现的喜悦,而不是传统数学学习中直奔主题的简单结论的记忆。表面看知识是简单的、清晰的、可言传的,但传统教育、教学所言传的所谓“焦点知识”,其实是 干枯的、僵化的知识,失去了活力和生机的。 二、转变教学方式,建立新型师生关系 研究性学习中教师与学生的角色、地位和关系发生了变化,学生成为求知过程的探究者,主动的学习者,教师也不再是居高临下的传授者,而是作为课题研究的组织者、平等的参与者。在研究性学习中学生自主选题、自主研究。在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初一 数学 研究性学习 报告
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-3323355.html