企业实施大数据的关键.docx
《企业实施大数据的关键.docx》由会员分享,可在线阅读,更多相关《企业实施大数据的关键.docx(10页珍藏版)》请在三一办公上搜索。
1、企业实施大数据的关键我们已经给大家介绍了大数据在企业运营的不同层面的应用场景。了解了这些应用场景后,企业比较关心的是,如果企业实施大数据战略,如何规划、如何实施、如何保障大数据的相关工作可以顺利开展。本文将试图解决这些问题。我们认为,企业要实时大数据战略,需要从五大关键方面规划:1.制定大数据规划找准切入点;2.强化大数据领导力设立CDO;3.设计合理的大数据组织结构;4.搭建富有执行力的大数据团队;5.用制度和文化保障大数据实施。本文将从这五大方面展开。 1、制定大数据规划找准切入点 成功的大数据规划聚焦于四个核心要素:应用场景、数据产品、分析模型和数据资产,企业着手实施大数据战略要着重考虑
2、这四大方面,管理者需要在这四方面做好规划,才能给企业带来更好的业务价值。 首先是应用场景,企业需要确定不同业务投入大数据的优先级,确定大数据的切入点。企业需要优先考虑业务的哪些方面投入大数据可以为企业提升绩效。在大数据应用于企业运营中,我们已经介绍了常见的大数据应用场景,包括业务运营监控、用户洞察与用户体验优化、精细化运营和营销、业务市场传播、经营分析等常见的方面。当然在人力资源、IT运维以及财务等方向也可以引入大数据。企业高管需要和各业务的整体负责人、数据专家一起开展研讨会,分析哪些业务投入大数据可以使得业务的绩效提升最为显著,从而确定不同业务投入大数据的优先级,找准大数据的切入点。“数据能
3、够在哪些领域实现业绩的大幅提高?数据能在哪些领域实现企业运营效率的提升”这些问题很重要,一开始就必须提出来。每个重要业务部门和职能部门都需要考虑这个问题,并展开相关的研讨。企业高管实施大数据战略的时候需要高度重视这一步,但在国内很多企业往往忽略的这一方面,投入大数据往往不是以提升业绩导向,而是以学术导向,使得很多企业实施大数据的看不到数据对企业绩效提升,从而使得大数据战略流产。 第二方面是数据产品。在确定了大数据的业务投入优先级后,我们需要考虑的是如何通过数据产品来帮助提升业务的绩效。为什么是“数据产品”而不是“数据工具”,这是因为“数据产品”比“数据工具”更加强调易用性和用户体验。数据和分析
4、模型本身的输出可能会比较复杂,比较难理解,这样往往导致经理或者一线员工等数据用户不能理解,更称不上运用。所以,只有数据产品在业务具体的场景运用的时候,以非常简单易用的方式来呈现,才能让更多的数据用户使用。企业数据用户在实际运用大数据的时候,更关注的是大数据的产品在哪些方面可以直接帮忙提升绩效,不会太关注大数据这些产品背后的逻辑、分析模型等“黑洞”。如果我们在提供数据产品的时候需要数据用户理解很多“黑洞”,那么数据一定运用不起来,数据的价值就会大打折扣。比如,数据产品可以告诉营销人员,您这次合作的营销推广渠道有所带来的用户40%是作弊而来,我们把这些作弊渠道带过来的用户叫“假量”,数据产品不需要
5、告诉营销人员“假量”是如何计算的,但知道结果和优化方向即可。或者数据产品可以直接告诉营销人员哪些产品和其他产品可以做交叉销售,如果这些产品实施交叉销售,可以进一步提高销售额。 第三方面是数据模型。数据产品背后的“黑洞”是数据模型。数据的堆砌不会创造太多的业务价值,需要数据模型、数据挖掘的方法来实现海量数据的商业洞察。常见的模型如预测和分类。在预测方面,如通过高级的模型来预测哪些用户可能会付费,他们的特征是什么,经常在什么地方出没;通过数据模型来预测付费客户的数量,以提前发现考核期结束后付费客户数量和KPI的差距以及优化方向;通过预测模型来洞察用户的未来购买需求;在分类模型方面,我们可以通过分类
6、模型结合大数据实现更准确更实时的用户细分;或者通过分类模型对不同价值的客户进行合理的分类,确定服务的优先级和服务内容。企业在制定大数据战略方向时,需要介入数据专家根据应用场景和数据产品的输出来选择模型以及优化模型,从而确定模型研发的方向和优先级。 第四方面是数据资产。有了应用场景、数据产品和数据模型这三大方面,我们就能更清楚的知道为了实现这三大方面,我们需要哪些数据,什么数据是企业现在拥有,什么数据可以通过合作产生,什么数据需要外部整合,什么数据需要进行购买或者投资。有了前面这三大方面(应用场景、数据产品和数据模型)的规划,大数据的采集、整合、管理的策略便能比较容易理清头绪和相应的规划。当我们
7、合理的整理企业所拥有的数据,并整合有利于业务发展的外部的数据,形成系统化的管理,才能很好的形成企业的数据资产。但在国内,最大的问题常常是各业务部门、各事业部以及职能部门的数据经常各自为政,数据存放在不同的数据库中,数据无法整合打通,企业内部形成各种孤岛,导致企业数据资产无法发挥整合效益,数据资产流失。要让企业的数据成为长期的数据资产,企业高管则需牵头规划,整合不同业务部门、不同事业部的数据,推动建设高数据质量的数据治理标准。 值得注意的是,为了加快大数据的推进速度,企业高管同时需要确定哪些方面自己实现,哪些方面委托第三方实现,哪些方面需要购买。在数据产品和数据模型方向,不一定所有工作都需要内部
8、员工实现。领导层需要根据时间和自身资源(尤其是人力资源)的情况判断,哪些数据产品自己开发、哪些数据产品可以委托第三方公司开发、哪些数据模型自己开发、哪些数据模型委托第三方公司开发。在收集外部数据的时候,我们既可以组建自己的团队进行数据收集,或者委托第三方公司帮忙收集,或者直接采购,或者收购相关的数据公司,企业需要根据自身情况进行合理的规划。 2、强化高管团队大数据能力,设立数据CDO 在互联网和大数据高速发展的时代,大数据正在深刻地改变商业的前景,如果企业要想抓住这个机遇,企业高管的数据决策力,数据管理能力也需要加强。抓住和大数据相关的机会可以增加企业营收、提高企业运营效率,甚至开拓出全新业务
9、。大数据在推进的过程中,最关键是要高管重视,高管重视不仅仅是嘴上说说,而是要考虑在决策层有强化数据方向的决策力和领导力,否则企业很难把大数据用好。如果不增加新的数据高管力量,很多组织的大数据大计将难以启动。 因此,高管团队中需要有专人负责制定大数据战略、跟进、监控和指导大数据战略的实施。如果没有在高管团队设立相关的数据负责人的职位CDO(首席数据官),则很难把数据分析和数据挖掘所发现的机会应用于企业战略层的业务发展决策以及相应的组织层面的变革。所以,我们建议,如果企业确实要推动大数据,一定要考虑设立CDO职位。 这里面还有一个比较重要的问题是:CDO是向CEO汇报还是COO汇报或者是向CTO汇
10、报。企业往往陷入一个误区,觉得数据是技术活,所以不少企业设立数据高管后,让数据高管直接向CTO汇报。这样的做法最大的问题是数据和业务还是有较大的脱节。我们建议是,数据高管应该向COO汇报或者CEO汇报。这样数据才能离业务更近,更能敏捷的应用于业绩的提升上,而不是躲在技术后面。我们所看到的大数据运用的较好的企业,数据负责人经常和业务负责人一起制定公司大数据实施计划,一起推进大数据在业务绩效提升。 CDO是一个综合能力要求非常高的职位。CDO主要是负责根据企业的战略发展需求,CDO需要跟各业务负责人有很好的互动,深入了解业务,在此基础上,制定在数据应用场景、数据产品化、数据建模、数据资产管理的战略
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 企业 实施 数据 关键
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-3262994.html