《三角形及其性质知识讲解.docx》由会员分享,可在线阅读,更多相关《三角形及其性质知识讲解.docx(11页珍藏版)》请在三一办公上搜索。
1、三角形及其性质知识讲解三角形及其性质知识讲解 1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法 2. 理解三角形内角和定理的证明方法; 3. 掌握并会把三角形按边和角分类 4. 掌握并会应用三角形三边之间的关系 5. 理解三角形的高、中线、角平分线的概念,学会它们的画法 要点一、三角形的定义 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形 要点诠释: 三角形的基本元素: 三角形的边:即组成三角形的线段; 三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角; 三角形的顶点:即相邻两边的公共端点. 三角形的定义中的三个要求:“不在同一条直线
2、上”、“三条线段”、“首尾顺次相接”. 三角形的表示:三角形用符号“”表示,顶点为A、B、C的三角形记作“ABC”,读作“三角形ABC”,注意单独的没有意义;ABC的三边可以用大写字母AB、BC、AC来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB分别用b、c表示 要点二、三角形的内角和 三角形内角和定理:三角形的内角和为180 要点诠释:应用三角形内角和定理可以解决以下三类问题: 在三角形中已知任意两个角的度数可以求出第三个角的度数; 已知三角形三个内角的关系,可以求出其内角的度数; 求一个三角形中各角之间的关系 要点三、三角形的分类 1.按角分类: 直角三角形三角形锐
3、角三角形 斜三角形钝角三角形要点诠释: 锐角三角形:三个内角都是锐角的三角形; 钝角三角形:有一个内角为钝角的三角形. 2.按边分类: 第1页 共8页 不等边三角形三角形底边和腰不相等的等腰三角形 等腰三角形等边三角形要点诠释: 不等边三角形:三边都不相等的三角形; 等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角; 等边三角形:三边都相等的三角形. 要点四、三角形的三边关系 定理:三角形任意两边之和大于第三边.推论:三角形任意两边之差小于第三边. 要点诠释: 理论依据:两点之间线段最短. 三边关系的应用:判断三条线段
4、能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形当已知三角形两边长,可求第三边长的取值范围 证明线段之间的不等关系 要点五、三角形的三条重要线段 三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,列表如下: 线段名称 文字语言 三角形的高 从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段 三角形的中线 三角形中,连接一个顶点和它对边中点的线段 三角形的角平分线 三角形一个内角的平分线与它的对
5、边相交,这个角的顶点与交点之间的线段 图形语言 作图语言 标示图形 1AD是ABC的高 2AD是ABC中BC边上的高 3ADBC于点D 4ADC90,ADB90 1AD是ABC的中线 1AD是ABC的角平分2AD是ABC中BC线 边上的中线 2AD平分BAC,交BC1于点D 3BDDCBC 12312BAC 4点D是BC边的中点 2过点A作ADBC于点D 取BC边的中点D,连接AD 作BAC的平分线AD,交BC于点D 符号语言 第2页 共8页 (或ADCADB90) 推理语言 用途举例 注意事项 重要特征 因为AD是ABC的高,所以ADBC (或ADBADC90) 1线段垂直 2角度相等 1与
6、边的垂线不同 2不一定在三角形内 三角形的三条高(或它们的延长线)交于一点 因为AD是ABC的中线,所以BDDC因为AD平分BAC,所以121BC 21线段相等 2面积相等 一个三角形有三条中线,它们交于三角形内一点 1BAC 2角度相等 与角的平分线不同 一个三角形有三条角平分线,它们交于三角形内一点 类型一、三角形的内角和 1证明:三角形的内角和为180. 解:已知:如图,已知ABC,求证:A+B+C180. 证法1:如图1所示,延长BC到E,作CDAB因为ABCD,所以1=A,B=2 又ACB+1+2=180, 所以ACB+A+B=180 证法2:如图2所示,在BC边上任取一点D,作DE
7、AB,交AC于E,DFAC,交AB于点F 因为DFAC,所以1=C, 2=DEC因为DEAB 所以3=B,DEC=A 所以A=2又1+2+3=180, 所以A+B+C=180 第3页 共8页 2.在ABC中,已知A+B80,C2B,试求A,B和C的度数 题中给出两个条件:A+B80,C2B,再根据三角形的内角和等于180,即A+B+C180就可以求出A,B和C的度数 解:由A+B80及A+B+C180, 知C100 又 C2B, B50 A80-B80-5030 解答本题的关键是利用隐含条件A+B+C180本题可以设Bx,则A80-x,C2x建立方程求解 已知,如图 ,在ABC中,C=ABC=
8、2A,BD是AC边上的高,求DBC的度数. 解:已知ABC中,C=ABC=2A 设A=x 则C=ABC=2x x+2x+2x=180 解得:x=36 C=2x=72 在BDC中, BD是AC边上的高, BDC=90,DBC=18090-72=18 类型二、三角形的分类 3.一个三角形的三个内角分别是75、30、75,这个三角形是 A 锐角三角形 B 等腰三角形 C 等腰锐角三角形 C 一个三角形中,一个内角的度数等于另外两个内角的和的2倍,这个三角形是三角形 A 锐角 B 直角 C 钝角 D无法判断 C 利用三角形内角和是180以及已知条件,可以得到其中较大内角的度数为120,所以三角形为钝角
9、三角形. 类型三、三角形的三边关系 4. (四川南充)三根木条的长度如图所示,能组成三角形的是( ) 第4页 共8页 三角形三边关系的性质,即三角形的任意两边之和大于第三边,任意两边之差小于第三边注意这里有“两边”指的是任意的两边,对于“两边之差”它可能是正数,也可能是负数,一般取“差”的绝对值 D 要构成一个三角形必须满足任意两边之和大于第三边在运用时习惯于检查较短的两边之和是否大于第三边A、B、C三个选项中,较短两边之和小于或等于第三边故不能组成三角形D选项中,2cm+3cm4cm故能够组成三角形 判断以三条线段为边能否构成三角形的简易方法是:判断出较长的一边;看较短的两边之和是否大于较长
10、的一边,大于则能够成三角形,不大于则不能够成三角形 举一反三: 判断下列三条线段能否构成三角形. (1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8. 能; 不能; 能. 5.若三角形的两边长分别是2和7,则第三边长c的取值范围是_. 5c9 三角形的两边长分别是2和7, 则第三边长c的取值范围是2-7c2+7,即 5c9 三角形的两边a、b,那么第三边c的取值范围是a-bca+b. 举一反三: (浙江金华)已知三角形的两边长为4,8,则第三边的长度可以是_(写出一个即可) 5,注:答案不唯一,填写大于4,小于12的数都对 类型四、三角形中重要线段 6. (江苏连云港)小华在电话
11、中问小明:“已知一个三角形三边长分别为4,9,12,如何求这个三角形的面积?”小明提示:“可通过作最长边上的高来求解”小华根据小明的提示作出的图形正确的是( ) C; 三角形的高就是从三角形的顶点向它的对边所在直线作垂线,顶点和垂足之间的线段解答本题首先应找到最长边,再找到最长边所对的顶点然后过这个顶点作最长边的垂线即得到三角形的高 锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交 第5页 共8页 于一点这里一定要注意钝角三角形的高中有两条高在三角形的外部 如图所示,已知ABC,试画出ABC各边上的高 解:所画三角形的高如图所示 7.如图所示,CD为ABC的AB边上的中线,
12、BCD的周长比ACD的周长大3cm,BC8cm,求边AC的长 根据题意,结合图形,有下列数量关系:ADBD,BCD的周长比 ACD的周长大3 解:依题意:BCD的周长比ACD的周长大3cm, 故有:BC+CD+BD-(AC+CD+AD)3 又 CD为ABC的AB边上的中线, ADBD,即BC-AC3 又 BC8, AC5 答:AC的长为5cm 运用三角形的中线的定义得到线段ADBD是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法 举一反三: 如图所示,在ABC中,D、E分别为BC、AD的中点,且SABC=4,则S阴影为_ 1 一、
13、选择题 1一位同学用三根木棒拼成如图所示的图形,其中符合三角形概念的是( ) 第6页 共8页 2如图所示的图形中,三角形的个数共有( ) A1个 B2个 C3个 D4个 3任何一个三角形至少有个锐角 A1 B2 C3 D 不能确定 4已知三角形两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为第三边的是 ( ) A13 cm B6 cm C5 cm D4 cm 5为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA16m,PB12m,那么AB间的距离不可能是( ) A5m B15m C20m D28m 第八题 6三角形的角平分线、中线和高都是 ( ) A直线 B线段 C
14、射线 D以上答案都不对 7下列说法不正确的是 ( ) A三角形的中线在三角形的内部 B三角形的角平分线在三角形的内部 C三角形的高在三角形的内部 D三角形必有一高线在三角形的内部 8如图,AM是ABC的中线,那么若用S1表示ABM的面积,用S2表示ACM的面积,则S1和S2的大小关系是( ) AS1S2 BS1S2 CS1S2 D以上三种情况都有可能 9若ABC的A60,且B:C2:1,那么B的度数为( ) A40 B80 C60 D120 二、填空题 10三角形的三边关系是_,由这个定理我们可以得到三角形的两边之差_第三边,所以,三角形的一边小于_并且大于_ 11如果三角形的两边长分别是3
15、cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为_cm 12. 已知等腰三角形的两边分别为4cm和7cm,则这个三角形的周长为_ 13. 如图,AD是ABC的角平分线,则_1_;BE是ABC2 第7页 共8页 的中线,则_1_;CF是ABC的高,则_2_90,CF_AB 14. 如图,AD、AE分别是ABC的高和中线,已知AD5cm,CE6cm,则ABE和ABC的面积分别为_ 15.在ABC中,(1)若A:B:C1:2:3,则A_,B_,C_,此三角形为_三角形; (2) 若A大于B+C,则此三角形为_三角形 三、解答题 16判断下列所给的三条线段是否能围成三角形? (1)5cm,5cm,a cm(0a10); (2)a+1,a+2,a+3;(3)三条线段之比为2:3:5 17如图,在ABC中,BADCAD,AECE,AGBC,AD与BE相交于点F,试指出AD、AF分别是哪两个三角形的角平分线,BE、DE分别是哪两个三角形的中线?AG是哪些三角形的高? 18题 18.如图所示,已知AD,AE分别是ABC的中线、高,且AB5cm,AC3cm,则ABD与ACD的周长之差为多少,ABD与ACD的面积有什么关系. 19.利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)? 第8页 共8页
链接地址:https://www.31ppt.com/p-3204997.html