七年级7章平面图形的认识总复习.docx
《七年级7章平面图形的认识总复习.docx》由会员分享,可在线阅读,更多相关《七年级7章平面图形的认识总复习.docx(26页珍藏版)》请在三一办公上搜索。
1、七年级7章平面图形的认识总复习七年级 第七章:平面图形的认识 课标要求: 1相交线与平行线 识别同位角、内错角、同旁内角。 理解平行线概念;掌握基本事实:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。 掌握基本事实:过直线外一点有且只有一条直线与这条直线平行。 掌握平行线的性质定理:两条平行直线被第三条直线所截,同位角相等。 *了解平行线性质定理的证明。 能用三角尺和直尺过已知直线外一点画这条直线的平行线。 探索并证明平行线的判定定理:两条直线被第三条直线所截,如果内错角相等,那么两直线平行;平行线的性质定理:两条平行直线被第三条直线所截,内错角相等。 了解平行于同一条直线的两条直
2、线平行。 2图形的平移 通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等。 认识并欣赏平移在自然界和现实生活中的应用。 运用图形的轴对称、旋转、平移进行图案设计。 3三角形 理解三角形及其内角、外角、中线、高线、角平分线等概念,了解三角形的稳定性。 探索并证明三角形的内角和定理。掌握它的推论:三角形的外角等于与它不相邻的两个内角的和。证明三角形的任意两边之和大于第三边。 4多边形 了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;探索并掌握多边形内角和与外角和公式。 重点难点: 重点:掌握直线平行的条件与性质;掌握平移的基本性质;
3、掌握三角形相关概念,会画出任意三角形的角平分线、中线、高线;掌握多边形的内角和与外角和定理,并能利用此进行相关角度的计算。 难点:平行线条件与性质的探索过程,平行线间的距离,能进行相关线段和差及角度和差的计算。 知识梳理 一三线八角: 两条直线AB、CD与直线EF相交,交点分别为E、F,如图,则称直线AB、CD被直线EF所截,直线 为截线,直线_ 、_称为被截线,两条直线AB、CD被直线EF所截可得8个角,这样的图形就是我们通常所说的“三线八角”. 1 、 这八个角中有: 1、对顶角:1与3,2与4,5与7,6与8. 2、邻补角有:1与2,2与3,3与4,4与1,5与6,6与7, 7与8,8与
4、5. 、同位角,内错角,同旁内角: 1、同位角:两条直线被第三条直线所截,在二条直线的同侧,且在第三条直线的同旁的二 个角叫 。 如图中的1与5分别在直线AB、CD的上侧,又在第三条直线EF的右侧,所以1与5是同位角,它们的位置相同,在图中还有2与 ,4与 ,3与7也是同位角. 2、内错角:两条直线被第三条直线所截,在二条直线的内侧,且在第三条直线的两旁的二 个角叫 。 如上图中2与8在直线AB、CD的内侧,且在EF的两旁,所以2与8是内错角.同理,3与 也是内错角. 3、同旁内角:两条直线被第三条直线所截,在两条直线的内侧,且在第三条直线的同旁的 两个角叫 。. 如上图中的2与5在直线AB、
5、CD内侧又在EF的同旁,所以2与5是同旁内角,同理,3与 也是同旁内角. 4、 因此,两条直线被第三条直线所截,共得4对同位角,2对内错角, 对同旁内角. .二. 直线平行的条件: 1、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,简记为: 相等,两直线平行 2、两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简记为: 相等,两直线平行 3、两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简记为: 互补,两直线平行 三平行线的性质: 1、两条平行线被第三条直线所截,同位角相等.简记为: 两直线平行, 相等 2、两条平行线被第三条直线所截,内错角相等
6、.简记为: 两直线平行, 相等 3、两条平行线被第三条直线所截,同旁内角互补,简记为: 两直线平行, 互补 4、两平行线之间的距离相等 5、如果两个角的两边分别平行,那么这两个角相等或互补。 四平移 1图形的平移 2 在平面内,将一个图形沿着某个_移动一定的_,这样的图形运动叫做图形的_如图1,_和_,_和_可以平移互相得到 由此,我们可以看出:图形的平移有两个重要因素,即_和_ 2. 图形的平移的要素:方向、距离。 将图2平移得到图3后,我们可以看出点A对应点A1,点D对应点D1,点_对应点_,点_对应点_如图2、3,对应点的连线AA1或DD1表示平移的方向和距离,还可以用_表示 3. 图形
7、平移的性质: 图形的平移不改变图形的 与 ,只改变 。并且平移不改变直线的方向。 图形平移后,对应点的连线 或在同一直线上且 图形平移后,对应线段平行或在同一直线上且相等, 图形平移后,对应角相等。 A A C C B B ABC向右平移相同距离得到ABC,其中A与A是对应点,线段AB与线段AB是 对应线段, 与A是对应角. 平移把直线变成与它平行的直线. 两条平行线中的一条可以通过平移与另一条重合 归纳:综上所述,平移前后的两个图形的_ 和 _相同,_ 和 _相等 4. 平移作图: 确定一个图形平移后的位置所需条件为: 1、图形原来的位置 2、平移的方向 3、平移的距离 5. 两直线之间的距
8、离: 如果两条直线互相平行,那么其中一条直线上任意两点到另一条直线的距离相等,这个距离称为 之间的距离。 五认识三角形 (一). 三角形的有关概念: 3 1、由不在同一直线上的三条线段,首位顺次相接所组成的图形叫做三角形. 2、三角形有三条边、三个顶点和三个内角. 记作: (1)点A、B、C叫做_ (2)线段AB、BC、AC叫做_ (3) A、B、C叫做_ (4)线段AB是C的_,也可以用_表示;线段BC 是A的_,也可以用_表示;线段AC是B的_, 也可以用_表示 (二). 三角形分类: 1、三角形按边分类: 不等边三角形三角形腰和底不相等的等腰三角形等腰三角形等腰三角形等边三角形 等边三角
9、形注: 1) 我们把只有两条边相等的三角形叫做等腰三角形,相等的两边叫做这个等腰三角形的腰;把三边都相等的三角形叫做等边三角形. 2)等边三角形是特殊的等腰三角形,切记不能将三角形按边分成不等边三角形、等腰三角形和等边三角形三类. 2、三角形按角分类: 三个内角都是锐角的三角形叫做锐角三角形. 有一个内角是直角的三角形叫做直角三角形. 在直角三角形ABC中,C90,AC、BC叫做直角三角形的直角边,AB叫做直角 三角形的斜边。 用“Rt”表示直角,直角三角形ABC可表示为:RtABC. 直角三角形的两个锐角互余.即 90. 有一个内角是钝角的三角形叫做钝角三角形. AAABCBCBC(三).
10、三边关系: 1、三角形任意两边之和大于 ,两边之差小于第三边; (四). 三角形的性质: 三角形具有稳定性 4 (五). 三角形的角平分线、中线和高: 如图,点D、E、F都在AB上. 1. 角平分线: 1) 在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点间的 叫做三角形的角平分线. 2) 若ACE=ECB=1ACB,则 是ABC的角平分线. 22. 高: 1).从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的 叫做三角形的高线,简称三角形的高. 2).若CFAB,则 是ABC的高. 3. 中线: 1). 在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的
11、中线. 2).若AD=BD=1AB时,则CD是ABC的中线. 2说明: 三角形有 条角平分线, 条中线, 条高线,它们都是线段。 三角形三条角平分线,三条中线都在三角形的内部,但高不一定(钝角三角形有两条在外部,直角三角形时有两条恰好是两条直角边). 三角形三条角平分线交于一点,三条中线交于一点,三条高线线所在的 交于一点. 三角形的中线 三角形的角平分线 三角形的高 三条中线交于三角形内一点 三条角平分线交于三角形内一点 锐角三角形的三条高交于三角形内一点; 直角三角形的三条高交于边上; 钝角三角形的三条高交于三角形外一点 . 三角形的内角和定理: 1、三角形的内角: 三角形的三个内角的和等
12、于 . 推论:直角三角形的两个锐角 . 2、三角形的外角:三角形的一边与另一边的延长线所组成的角,叫做三角形的外角. 图中的CBD称为ABC的一个外角 三角形的一个外角等于与它不相邻的 的和. 三角形的外角和等于 . 3、注意: “外角”是三角形的外角,不是它相邻内角的外角.对三角形的外角,称某个角是某个三角 5 形的外角,而不称三角形某个角的外角 六多边形的内角和与外角和 1. 过n边形的一个顶点可以作_条对角线,将n边形分割成_个三角形,所以n边形的内角和_个三角形的内角和,即n边形的内角和_180 2. 多边形的内角: (1)多边形的内角和定理:n边形的内角和等于(n-2)180; 3.
13、 多边形的外角: 多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的 任意多边形的外角和等于 . 4.对角线条数公式:n边形的对角线有条; 5.正多边形定义:各边相等,各角也相等的多边形是正多边形. 考点归纳: 考点一:探索直线平行的条件; 例1 如图,能与1构成同位角的角的个数为 ( ) A2 B3 C4 D5 例2 如图,在AB、CD、EF、MN构成的角中,已知123,则图中有平行线吗?如果有,把互相平行的直线找出来,并说明理由 例3 如图,下列结论:若12,则ABCD;若12,则 ADBC;若34,则ABCD;
14、若34,则ADBC其中, 正确的是 ( ) A B C D 例4 如图,根据下列条件,可以判断哪些直线互相平行,并把理由写在括号内。 (1) 1D; (2) 2B; (3) 3A180 6 练习 1如图,在所标识的角中,属于同位角的是 ( ) A1和2 B1和3 C1和4 D2和3 2如图,175,要使ab,则2的度数为 ( ) A75 B95 C105 D115 3如图,如果DEFC,那可以得出的结论是 ( ) AAD/BC BEFBC CABDC DADEF 4如图,12,则下列结论一定成立的是 ( ) A ABCD BADBC CBD D34 5如图,下列说法错误的是 ( ) A1和C是
15、同旁内角 B2与B是同旁内角 C2与C是内错角 DEAC与C是内错角 4 5 第4题 第5题 第6题 6、如图,1=2, ; (2) ADC+BAD=180, 。 7如图,直线AB、CD被直线EF所截,12 (1)直线AB和CD平行吗?为什么? 8如图,直线EF和直线AB、CD分别相交于点K、H,且EGAB,CHF60,E30试说明ABCD 7 9如图,CDACBA,DE平分CDA,BF平分CBA,且ADEAED,试说明DEFB 考点二:探索平行线的性质; 例1 如图,ABCD,1140,290,则3的度数为 A40 B45 C50 D60 例2如图,ABDE,BCEF,BC交DE于点O,B与
16、E有什么关 系?为什么? 例3如图,直线ab,直角三角形如图放置,DCB=90,若1+B=70,则2的度数为 A20 B40 C30 D25 例4填写推理理由 已知:如图,D、E、F分别是BC、AB、AC上的点,DFAB,DEAC,FDE=70,求A的度数 A解:DEAC ( ) A+AED=180( ) EFDFAB ( ) FDE+AED =180( ) A=FDE=70( ) BCD 8 例5.(XX年贵州安顺)如图,A0B的两边0A,0B均为平面反光镜,A0B=40在0B上有一点P,从P点射出一束光线经0A上的Q点反射后,反射光线QR恰好与0B平行,则QPB的度数是 例6.如图,若AD
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 平面 图形 认识 复习

链接地址:https://www.31ppt.com/p-3196943.html