SPSS使用方法速查.docx
《SPSS使用方法速查.docx》由会员分享,可在线阅读,更多相关《SPSS使用方法速查.docx(16页珍藏版)》请在三一办公上搜索。
1、SPSS使用方法速查SPSS方法简介 自由度:自由度(degree of freedom, df)在数学中能够自由取值的变量个数,如有3个变量x、y、z,但x+y+z=18,因此其自由度等于2。在统计学中,自由度指的是计算某一统计量时,取值不受限制的变量个数。通常df=n-k。其中n为样本含量,k为被限制的条件数或变量个数,或计算某一统计量时用到其它独立统计量的个数。自由度通常用于抽样分布中。 0.Spss的适用范围 1)统计描述 运用适宜的统计指标、统计表、统计图等方法,对研究对象的分布类型和数量特征进行展示的过程,通过统计描述可以研究对象的基本特征。 2)概率分布 随机变量:变异现象在生物
2、界普遍存在,这种变异现象表现在人体某一具体指标或变量上,就是其数值的变化,测量前的不可预知性,这种变量叫随机变量 频数分布表和分布图描述了某一随机变量的经验分布,这是针对样本资料来透视数据的分布特征。由于抽样的随机性,样本的经验分布会随着样本的不同而变化。当样本扩展到总体时,随机变量的总体分布即为概率分布。 变量值的常见总体分布有正态分布、二项分布和Poisson分布,常见的抽样分布有t分布、F分布和x2分布,本质上这两种分布都是概率分布。 3)参数估计与假设检验 统计推断是根据样本提供的信息,以一定的概率对总体的分布及其特征作推断,常包含参数估计和假设检验。 参数估计是指由样本统计量估计总体
3、参数;假设检验是指对所估计的总体的首先提出某种假设,然后根据随机样本信息及抽样误差理论,应用小概率反证法逻辑思维推断某种假设可被接受或拒绝的统计检验方法。 4)t检验 T检验是以t分布为基础,是数值资料中常用的假设检验方法主要用于两个均数的比较。理论上,t检验的应用条件要求样本来自正态分布总体,随机样本且总体方差齐性。当样本含量较大时,t分布近似于正态分布,可用u检验,此情况下t检验等价于u检验。 5)方差分析 对于多个样本均数的比较,需用方差分析,多样本均数的比较不能反复使用t检验的原因是会增大I性错误的概率。 6)双变量相关与回归分析 变量之间的关系有确定性关系和非确定性关系。确定性关系是
4、指对于一个变量的每个可能取值,另外的变量都有完全确定的值与之对应;非确定性关系是指变量间的关系不确定,如人的身高与体重、胰岛素与血糖、年龄与血压、吸烟与肺癌、体温与脉搏等,这些变量间关系密切,但不能由一个或几个变量的值精确求出另一个变量的值。 回归与相关是研究变量间非确定关系的统计方法。 7)x2检验 即卡方检验,是以x2分布为理论基础的统计方法,主要包含两个样本率或构成比、多个样本率或构成比之间的差别有无统计学意义及多重比较、两个分类变量之间的关联分析、频数分布拟合忧度的x2检验。 8)基于秩次的非参数检验 假设检验分为参数检验和非参数检验。参数检验是以特定的总体分布为前提,对未知的总体参数
5、进行推断的假设检验方法。但有时候总体分布不易判定,参数检验的条件得不到满足,在这种情况下,可以采用非参数检验的方法。非参数检验是参数检验方法的有效补充,它并不依赖于总体分布类型,不检验总体的参数,而是对总体的分布或分布位置进行检验。 9)协方差分析 方差分析要求各比较组除所施加的处理因素不同,其它对观察指标有影响的因素要求固定在同一个水平上。但有时是的处理因素对观察指标产生了影响,在直接分析观察指标建的差异则不满足方差分析对处理因素的要求。比如降糖药物临床疗效研究中,试验后的血糖值是评价药物疗效的一个重要指标,但试验后的血糖值受试验前血糖值影响,实验前后的血糖值间存在一定的线性关系,试验前的血
6、糖值是难以控制,如果直接分析试验后的血糖值间的差异来评价药物的降糖疗效不恰当,这里必须扣除或均衡不可控制因素,故考虑应用协方差分析。 10)多重线性回归分析 一个应变量与多个自变量之间依存关系的统计方法。多重线性回归分析要求应变量是服从正态分布的连续性数值变量。 11)Logistic回归分析 应变量是分类变量的资料,如治愈与未治愈,生存与死亡,发病与未病,疗效评价分显效、好转、无效等。这类资料,由于应变量是分类变量不具有连续性和正态性,直接用一般多重线性回归分析是不妥的,可用logistic回归分析。 适用于应变量为分类变量的回归分析。 12)生存分析 应用于社会科学和自然科学领域具有不完全
7、数据的事件分析,如设备的失效、疾病的发生、患者康复或复发等,另外还有可靠性分析和失效时间分析。 13)聚类分析和判别分析 都是研究事物分类的统计学方法。聚类分析是在事物分类面貌尚不清查,甚至连总共分几类也不确定的情况讨论事物的分类问题,是“无法可循”的方法; 判别分析是根据已知其类别的样品,总结出类别的判别方法,用以判断未知类别的新样品的类别,是“有法可依”的方法。 14)主成分与因子分析 旨在浓缩数据或简化数据,即以最少的信息丢失为代价将众多的观测变量浓缩为少数几个因素,从而提炼问题,或发现事物的内在联系。主成分分析和因子分析是最为常用的数据简化方法,用于考察多个变量的内在结构,或者提取数据
8、的主要信息。 15)Meta分析 对已有研究结果进行二次定量综合分析与评价,是现代循证医学产生最佳证据的重要方法。 1.Spss软件中常见的累积概率分布函数和密度函数 函数形式 函数说明 累积分布函数(cumulative distribution functions,CDF) CDFNORM(zvalue) CDF.NORMAL(quant,mean,stddev) CDF.BINOM(quant,n,prob) CDF.POISSON(quant,mean) CDF.T(quant,df) CDF.CHISQ(quant,df) CDF.F(quant,df1,df2) 返回标准正态分布的
9、累计概率值 返回任意给定的正态分布的累计概率值 返回任意给定的二项分布的累计概率值 返回任意给定的Poisson分布的累计概率值 返回任意给定自由度的t分布的累计概率值 返回任意给定自由度的x分布的累计概率值 返回任意给定自由度的F分布的累计概率值 2CDF.UNIFORM(quant,min,max) 返回任意给定参数的均匀分布的累计概率值 概率密度函数 PDF.NORMAL(quant,mean,stddev) PDF.BINOM(quant,n,prob) PDF.POISSON(quant,mean) NPDF.T(quant,df,nc) PDF.CHISQ(quant,df) PD
10、F.F(quant,df1,df2) 返回任意给定的正态分布的概率密度值 返回任意给定的二项分布的概率密度值 返回任意给定的Poisson分布的概率密度值 返回任意给定自由度的t分布的概率密度值 返回任意给定自由度的x分布的概率密度值 返回任意给定自由度的F分布的概率密度值 22.累计函数和密度函数 transform-compute variable-写目标变量的名字,然后找合适的函数,填入适当参数即可。 3.求可信区间 输入变量值-analyze-descriptive statistics-explore-选择求值变量-dipendent-statistics-descriptive-c
11、ontinue-ok 1)求T界值 T分布函数CDF.T(q,a)=p(0=p0,a为自由度) 其逆函数IDF.T(p,a),将会返回q值。 比如求双侧检验自由度为8的t界值t0.05/2,8,赋值为t=IDF.T(0.975,8),得t0.05/2,8=2.30600,假定求单侧检验t界值t0.05,8,则赋值为t= IDF.T(0.95,8),得t0.05,8=1.85955 2)正态性检验 Analyze-descriptive statistics-explore-(需检测正态性的变量)-dependent-plots-stem-and-leaf,histogram,normality
12、 plots with tests-continue-ok 可以得出:基本统计描述指标、偏度系数和峰度系数及其标准误、Kolomogorov-Smirnov(即D法)与Shapiro-Wilk的检验统计量与对应的P值、Q-Q图与去势的正态Q-Q图、箱图等。 另外,还可以由anaylyze-descriptive statistics-P-P Plots或Q-Q plots或Q-Q plots视窗中,选中normal正态性检验,作P-P图与去势的正态P-P图或Q-Q图与去势的Q-Q图,点击test distribution下面选框中的下拉键头,选其他分布,可进行对应的分布检验,如选student
13、 t,则进行t分布检验。 3)t检验 单样本t检验Analyze-compare means-one-sample T test-”检查变量”-右下test框中修改系统默认值为比较的值 配对设计t检验-比如治疗前后比较paired-sample T test过程进行配对设计t检验:analyze-compare means-paired-sample test-”选择配对的两个变量”-paired vairables-ok 独立样本t检测-比如两组治疗情况对比analyze-compare means - independent-samples T test-”分别把检测变量和组别选好”-co
14、ntinue-ok 例如: 急性黄疸性肝炎患者退黄天数 组别 人数 退黄疸天数 中药组 7 5 10 14 21 17 8 12 对照组 8 18 21 30 23 22 22 29 20 结果: 得到t值为4.284,自由度v=n1+n2-2=15-2=13,P=2*1-CDF.T(3.351,13)= 0.00089,按照a=0.05的水准,若P=0.05,则采用equal variances assumed的t检验结果。本题levene检验结果:P=0.4860.05,所以t=4.284,P=0.001,最终拒绝H0,接受H1,由此推断中药组的退黄天数比对照组少。 4)成组设计两样本几何
15、均数比较的t检验: 计算变量的对数:transform-compute variable-target variable中输入“比较变量的对数”,选中“比较变量”-numeric expression-ok 频数加权:data-weight case-weight case by”变量2”-frequency-ok 正态性检验:analyze-descriptive statistics-exlpore-”比较变量”-dependent-”组别”-factorlist-plot-stem-and-leaf、histogram、normality plots with tests-continu
16、e-ok 对数数值的t检验:analyze-compare means-independent-sample t test-“检测变量”-test-”组别”-grouping-define groups-continue-ok 4.单因素方差分析 Analyze-compare means-one-way ANOVA-”检测变量”放入dependent list,”组别”-factor-options-descriptive、homogeneity of variance-continue,返回one-way ANOVA-post Hoc-LSD、S-N-K-dunnett,在control
17、gategory-first-continue-OK 5.双因素方差分析 Analyze-general linear model-univariate-”检测变量”放入dependent,“组别”、“区组”放入fixed factor-mode-custom将“组别”、“区组”-右model框-continue-Post Hoc,将factor内的“组别”-post hoc tests for-LSD、S-N-K、Dunnett,在control category-first-continue-options-ddescriptive statistics-continue-ok 多因素 A
18、nalyze-general linear model-univariate-选择自变量和因变量-option-display means for-选中descriptive statistics SPSS软件分析没有给出交互作用项各种搭配的均数或合计,所以,在方差分析的基础上,找最佳搭配,非交互作用因素不同水平差别有统计意义,可采用SPSS输出的相应因素不同水平的均数大小,结合专业,来决定取哪个水平。但有交互作用的因素选哪一个水平,还需要手工计算。 6.相关分析(li0701-03) 直线: (1) 散点图:graphs-legacy dialogs-scatter/dot-simple s
19、catter-define-x,y轴选好-ok (2) 正态性检测 (3) 线性相关:analyze-correlate-bivariate(双变量相关分析)-变量放入variable框-correlation coefficients-pearson,在test of significance下选中two-tailed-ok 秩: Analyze-correlate-bivariate,”自变量”因变量”-variables,在correlation coefficients-spearman,在test of significance下选中two-tailed-ok 回归分析: (1) 散
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- SPSS 使用方法
链接地址:https://www.31ppt.com/p-3166098.html