精品毕业论文混合动力汽车原理及发展前景研究.docx
《精品毕业论文混合动力汽车原理及发展前景研究.docx》由会员分享,可在线阅读,更多相关《精品毕业论文混合动力汽车原理及发展前景研究.docx(26页珍藏版)》请在三一办公上搜索。
1、精品毕业论文混合动力汽车原理及发展前景研究混合动力汽车原理及发展前景研究 摘 要 随着世界各国环境保护的措施越来越严格,替代燃油发动机汽车的方案也越来越多,例如氢能源汽车、燃料电池汽车、混合动力汽车等。但目前最有实用性价值并已有商业化运转的模式,只有混合动力汽车。本文主要对混合动力汽车的结构和工作原理进行分析,并对其发展前景进行深入研究。而且本文分析了混合动力汽车的研究现状,介绍了混合动力汽车的主要结构形式与工作特点,指出了混合动力汽车目前需要解决的主要问题和采用的关键技术,并对其发展前景进行了预测。 关键词:混合动力;工作原理;发展前景 Principle of Hybrid Vehicle
2、s and Development Prospects of Abstract With the world increasingly stringent environmental protection measures, alternative fuel engine cars more and more programs, such as hydrogen cars, fuel cell vehicles, and hybrid cars and so on. But the most practical method and mode of operation have been co
3、mmercialized and only hybrid vehicles. In this paper, the structure of hybrid vehicles and working principle of the analysis, and to develop prospects for further study. And this article analyzes the power of a car, with the main form of power structures and working quality, pointed out a move the c
4、ar is now required to solve the major issues and adopt the key technology and development made a prediction. Keywords: Hybrid; Working principle; Development prospects 目 录 一、混合动力汽车概念 1 1.1混合动力汽车的概念 1 1.2混合动力汽车的分类 1 1.2.1串联式混合动力电动汽车 1 1.2.2并联式混合动力电动汽车 2 1.2.3混联式混合动力电动汽车 3 二、混合动力汽车的工作原理 5 三、混合动力系统控制策略
5、 6 3.1静态逻辑门限值策略 7 3.2顺势优化控制策略 8 3.3全局优化控制策略 9 3.4模糊逻辑控制策略10 四、混合动力汽车的发展前景研究11 4.1混合动力汽车的市场应用11 4.2混合动力汽车的市场推广情况13 4.3混合动力汽车面临的问题14 4.4混合动力汽车的前景与展望16 4.4.1混合动力汽车的市场16 4.4.2成熟的混合动力汽车技术17 4.4.3混合动力汽车市场推广政策18 4.4.4我国混合动力汽车发展概况18 结语 19 参考文献 19 致谢 20一、混合动力汽车概念 1.1混合动力汽车的概念 混合动力汽车是指同时装备两种动力来源热动力源与电动力源的汽车。通
6、过在混合动力汽车上使用电机,使得动力系统可以按照整车的实际运行工况要求灵活调控,而发动机保持在综合性能最佳的区域内工作,从而降低油耗与排放。混合动力汽车就是在纯电动汽车上加装一套内燃机,其目的是减少汽车的污染,提高纯电动汽车的行驶里程。 混合动力汽车的燃油经济性能高,而且行驶性能优越,混合动力汽车的发动机要使用燃油,而且在起步、加速时,由于有电动马达的辅助,所以可以降低油耗。简单地说,就是与同样大小的汽车相比,燃油费用更低。而且,辅助发动机的电动马达可以在启动的瞬间产生强大的动力,因此,车主在享受更强劲的起步、加速的同时,还能实现较高水平的燃油经济性。 1.2混合动力汽车的分类 混合动力汽车包
7、括串联式混合动力电动汽车、并联式混合动力电动汽车、混联式混合动力电动汽车三种。一般所说的混合动力汽车是由电动马达作为发动机的辅助动力驱动汽车。其结构特点就是在传统HEV上改装或加装可充电的动力电池,因此,不同类型传统HEV所具备的特点在相应类型的可外接充电式混合动力汽车上依然具备,所不同的是Plug-in HEV用发动机功率比传统HEV的小,电机和电池功率比传统HEV的大,电池可通过电网进行充电。 1.2.1串联式混合动力电动汽车 串联式混合动力电动汽车主要由发动机、发电机、驱动电机和蓄电池组等部件组成。发动机仅仅用于发电,发电机所发出的电能供给电动机,电动机驱动汽车行驶。发电机发出的部分电能
8、向电池充电,来延长混合动力电动汽车的行驶里程。另外电池还可以单独向电动机提供电能来驱动电动汽车,使混合动力电动汽车在零污染状态下行驶。串联式混合动力电动汽车中发动机不直接驱动汽车行驶,而是通过发电机转化为电能,再通过电动机驱动汽车行驶,这使得串联式混合动力电动汽车更加适合城市低转速下频繁起步和低速行走,但缺点是结构比汽油机复杂,占用空间更多,能量耗损比较多。在这种连接方式下,电池就像一个水库,只是调节的对象不是水量,而是电能。电池对在发电机产生的能量和电动机需要的能量之间进行调节,从而保证车辆的正常工作。这种动力系统在城市公交上的应用比较多,轿车上很少使用。 串联型Plug-in HEV的特点
9、是:发动机带动发电机发电,电能通过电动机控制器直接输送给电动机,由电动机产生电磁力矩驱动汽车。在发动机与驱动桥之间通过电能实现动力传递,因此更像是电传动汽车,其结构原理图,如图1所示。 图 1 串联型Plug-in HEV动力系统简图 1.2.2并联式混合动力电动汽车 并联式混合动力电动汽车主要是由发动机、发电/电动机和蓄电池组等部件组成。并联式驱动系统可以单独使用发动机或电动机作为动力源,也可以同时使用电动机和发动机作为动力源来驱动汽车。并联式混合动力系统有两套驱动系统:传统的内燃机系统和电动驱动系统。两个系统既可以同时协调工作,也可以各自单独工作驱动汽车。这种方式的优点是动力更猛,结构相对
10、简单,但由于电动机只是辅助驱动系统,因此在节油效果上不如混联式显著。这种系统适用于多种不同的行驶工况,尤其适用于复杂的路况。该联结方式结构简单,成本低。 并联型Plug-in HEV的特点是:并联式布置保留了发动机及其后续传动的机械连接,由电池组-电动机所提供的动力在原驱动系统的某一处和主动力汇合,或者发动机和电动机产生的力完全分开用以驱动不同的驱动桥,即汽车可由发动机和电动机共同驱动或者各自单独驱动。发动机和电机是两个相互独立的系统,即可实现纯电动行驶,又可实现内燃机驱动行驶,在功率需求较大时还可以实现全混合动力行驶,在停车状态下可进行外接充电。其结构原理图,如图2所示。 图 2 并联型Pl
11、ug-in HEV动力系统简图 1.2.3混联式混合动力电动汽车 混联式混合动力电动汽车主要由发动机、发电机、电动机、行星齿轮机构和蓄电池组等部件组成。如丰田PRIUS所采用的混合驱动方式,是将发动机、发电机和电动机通过一个行星齿轮装置连接起来。动力从发动机输出到与其相连的行星架,行星架将一部分转矩传送到发电机,另一部分传送到电动机并输出到驱动轴。此时车辆并不是串联式或者并联式,而是介于串联和并联之间,充分利用两种驱动方式的优点,可以在低速下用电池带动汽车工作,在加速时,由两套动力系统一同工作,在驱动汽车行驶的同时又为电池充电,因此非常适合城市走走停停的低速路况。混联式混合动力系统的特点在于内
12、燃机系统和电机驱动系统各有一套机械变速机构,两套机构或通过齿轮系,或采用行星轮式的结构结合在一起,从而综合调节内燃机与电动机之间的转速关系。另外,汽车在小负荷工作时,电动机/发电机给蓄电池充电,使蓄电池得以补充电能;在汽车减速或制动时,汽车驱动电动机/发电机为蓄电池充电。与并联式混合动力系统相比,混联式混合动力系统可以更加灵活地根据工况来调节内燃机的功率输出和电机的运转。唯一的缺点就是价格高,结构复杂。 基本上混合动力汽车就是以上说的那些,不过现在也有公司在开发非电动的混合动力车,比如通用公司的氢动力车。 混联型Plug-in HEV驱动系统是串联式与并联式的综合,图3为一种典型的混联型Plu
13、g-in HEV动力系统结构原理图。发动机发出的功率一部分通过机械传动输送给驱动桥,另一部分则驱动发电机发电。发电机发出的电能由控制器控制,输送给电动机或电池,电动机产生的驱动力矩通过动力耦合装置传送给驱动桥。混联型Plug-in HEV驱动系统的控制策略是:在汽车低速行驶时,驱动系统主要以串联方式工作;汽车高速稳定行驶时,则以并联工作方式为主;停车时,通过车载充电器对其进行外接充电。 图 3 混联型Plug-in HEV动力系统简图 二、混合动力汽车的工作原理 混合动力汽车在发达国家已经日益成熟,有些已经进入使用阶段。由于构造复杂,成本较高,在电动汽车时代到来之前,混合动力型汽车只是一种过渡
14、产品。 HEV既要使用发动机作为动力来保证HEV正常行驶时所需要的基本动力,又要对发动机的节能和环保做出种种限制,使发动机的燃料消耗降低到最低,使发动机的有害气体的排放达到“超低污染”标准的要求。而采用控制发动机转速范围、降低发动机的最高转速、保持发动机稳定均衡地运转、并采取“开关”的控制方式,使发动机避开启动、怠速和转速突然变化时,燃料燃烧不完全而引起的燃料经济性降低和增加有害废气的排放,从而控制发动机始终处于最佳状态下运转。另外,HEV还可以广泛地采用转子发动机、燃气轮机(Gas Turbine)和斯特林发动机作为HEV的发动机。 HEV上是以电动机驱动作为发动机驱动的辅助动力,但必须对电
15、池组的质量和整车的整备质量进行限制,以减轻HEV的总质量。因此,一般电动/发电机只是在HEV发动机启动,车辆启动、加速或爬坡时起作用。电动/发电机又是发动机的飞轮,起调节发动机输出功率作用。电动/发电机还起发电机的作用,将发动机的动能转化为电能,储存到电池组中去。在HEV下坡或制动时,将汽车惯性动能转换为电能,储存到电池组中去。因此,HEV有了电动机的辅助作用,就可以使用HEV达到节能和“超低污染”的要求。 HEV汽车在起步、行车、加速和停车时,由其控制系统自动判断和控制使用何种动力,使汽车的能源消耗和排放指标控制在最佳范围。汽车起步时因发动机的效率低,由电动机提供动力,在信号等待时,发动机会
16、自动停止运行,避免怠速空转的燃油消耗。汽车在正常行驶中控制发动机在最佳区域运行,一部分动力用于克服道路阻力,另一部分动力用于为电池充电。 当车辆起步加速或爬坡时,除机组所产生的电能,通过控制设备,输往驱动车轮的电动机,此外,蓄电池组也同时供电给驱动车轮的电动机,以保证车辆具有足够的牵引能力。当车辆在平坦道路上作等速运行时,只需发电机组单独提供电能驱动车辆即可。当车辆减速时,发电机组产生的电能,通过控制设备,向蓄电池组充电;在车辆制动过程中,驱动车轮的电动机,将转变为发电机,并通过控制设备向蓄电池充电。此种能将车辆的动能转变为电能并加以回收的制动方式,被称为“再生制动”。 混合动力汽车通过将发动
17、机、充电电池和电动机的最佳组合,既可以提高发动机工作效率,节省能源,又可以清洁排放,减少环境污染。这种车除发动机可对电池充电外,在减速时动力回收再生,制动器可以将机械能转换成电能,避免了能量的浪费。装用了混合动力系统的汽车燃料经济性比普通汽车可提高1倍,同时使能引起地球变暖的CO2排放量减少一半。 混合动力驱动车辆在运行中,能向蓄电池组补充电能,因此,没有必要像电动车那样,必须停歇在车库内花很长时间充电。混合动力驱动的车辆具有节能、低排放、低噪音等优点,并且保持了传统的由内燃机驱动的汽车续驶里程长的固有特点,混合动力驱动的车辆不论在小轿车或是大型车辆领域中,均将有巨大的发展潜力和看好的市场前景
18、。 混合动力汽车(HEV)不加重环境污染,其动力系统包括内燃机和电池组,兼备了内燃机汽车和电动汽车的优点,它将内燃机、电动机与一定容量的储能器件通过控制系统相组合,电动机可补充提供车辆起步、加速时所需转矩,又可以存储吸收内燃机富余功率和车辆制动能量,从而可大幅度降低油耗,减少污染物排放。混合动力汽车虽然没有实现零排放,但其动力性、经济性和排放等综合指标能满足当前苛刻要求,可缓解汽车需求与环境污染及石油短缺的矛盾。与传统内燃机汽车相比,其主要优点是采用了高功率的能量储存装置向汽车提供瞬时能量,可以提高效率、节省能源、降低排放,因此经济性和排放性明显改善,技术经济可行性较强。较之纯电动汽车,其主要
19、优点是:续驶里程和动力性可达到内燃机汽车的水平;空调、真空助力、转向助力及其它辅助电器,借助原动机动力,无需消耗电池组有限电能,从而保证了乘坐的舒适性;而且混合动力汽车技术难度相对较小,成本也相对较低。混合动力汽车介于传统汽车和纯电动汽车、燃料电池汽车之间,是一种承前启后的,在经济和技术方面都趋于成熟的电动汽车产品。 三、混合动力系统控制策略 因混合动力汽车各个组成部件、布置方式及控制策略的不同,形成了各式各样的结构形式。根据发动机和电机的功率比的混合动力汽车将发动机、电动机和能量储存装置按某种方式组合在一起,有串联式、并联式和混联式三种布置形式。串联式混合动力汽车的控制策略的主要目标是使发动
20、机在最佳效率区和排放区工作,其主要控制策略有恒温器模式、发动机跟踪器控制模式及基于规则型策略。并联控制策略主要包括:静态逻辑门限值策略、瞬时优化控制策略、全局优化控制策略和模糊逻辑控制策略。其中后三个策略也适用于混联式的控制策略,另外混联式还有两种特有的控制策略:发动机恒定工作点策略和发动机最优工作曲线策略。下面主要对并联式和混联式混合动力汽车典型的控制策略进行分析。 3.1 静态逻辑门限值策略 该策略主要通过设置车速、动力电池的电池荷电状态上下限及发动机工作转矩等一组门限参数,限定动力系统各部件的工作区域,并根据车辆实时参数及预先设定的规则调整动力系统各部件的工作状态,以提高车辆整体性能。这
21、种策略的主要依据是工程经验,根据部件的稳态效率MAP图来确定如何进行发动机和电动机之间的动力分配。美国密西根大学Peng Huei等人将混合动力汽车控制分成三种模式,即正常行驶模式、充电模式及制动能量回馈模式。发动机稳态效率MAP图的划分,如图1 所示。 图 4 基于规则的功率管理策略中发动机稳态效率MAP图的划分 正常行驶模式。从图4中可以看出,用“发动机工作最小功率”曲线和“电动机助力最小功率”曲线将发动机效率MAP图划分成三个区域,即:纯电动区域、发动机驱动区域及电动机辅助功率区域。功率分配规则: a.如果需求的驱动功率小于发动机工作的最小功率,则由电动机提供全部的驱动功率; b.如果需
22、求的驱动功率超过该限值,则由发动机取代电动机驱动车辆前进; c.如果需求的驱动功率大于电动机助力最小功率,则由电动机提供额外的驱动功率。在正常行驶模式下,发动机总是工作在“发动机工作最小功率”和“电动机助力最小功率”之间效率最高的区域。 充电模式。对电池能量的管理采用了充电维持策略,即始终保持电池的SOC值位于最高效率区的上下限值之间。当SOC值小于55% 时,应切换至充电模式,并计算电池的充电功率,该功率同时也作为电动机的目标功率。发动机的目标功率为需求的驱动功率与充电功率之和。充电模式中存在一个特例:当发动机的目标功率小于发动机工作最小功率时,为避免发动机在效率极低的区域内工作,仍然依靠电
23、动机提供驱动力。 制动能量回馈模式。驾驶员踩下制动踏板,表明了驾驶员对负驱动功率的需求,应进入制动能量回馈模式,吸收混合动力汽车制动时的能量。然而,当制动能量超过可回馈的制动能量时,液压制动系统将提供剩余的制动能量。静态逻辑门限值策略主要依靠工程经验和实验,限定发动机的工作区域和工作方式,达到降低燃油消耗和排放的目的,方法比较简单直观,具有实用价值。但由于主要依靠工程经验设置门限参数,无法保证车辆燃油经济性最优,而且这些静态参数不能适应工况的动态变化,因此无法使整车系统达到最大效率。 3.2 瞬时优化控制策略 该控制策略是在发动机最优工作曲线模式的基础上,对混合动力汽车在特定工况点下整个动力系
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 毕业论文 混合 动力 汽车 原理 发展前景 研究

链接地址:https://www.31ppt.com/p-3124435.html