空调温度控制系统.docx
《空调温度控制系统.docx》由会员分享,可在线阅读,更多相关《空调温度控制系统.docx(30页珍藏版)》请在三一办公上搜索。
1、空调温度控制系统空调温度控制系统 目录 第一章 过程控制课程设计任务书2 一、设计题目2 二、工艺流程描述2 三、主要参数2 四、设计内容及要求3 第二章 空调温度控制系统的数学建模4 一、恒温室的微分方程4 二、热水加热器的微分方程6 三、敏感元件及变送器微分方程7 四、敏感元件及变送器微分特性8 五、执行器特性8 第三章 空调温度控制系统设计9 一、工艺流程描述9 二、控制方案确定10 三、恒温室串级控制系统工作过程13 四、元器件选择13 第四章 单回路系统的MATLAB仿真17 第五章 设计小结19 1 空调温度控制系统 第一章 过程控制课程设计任务书 一、设计题目:空调温度控制系统的
2、建模与仿真 二、工艺过程描述 设计背景为一个集中式空调系统的冬季温度控制环节,简化系统图如附图所示。 系统由空调房间、送风道、送风机、加热设备及调节阀门等组成。为了节约能量,利用一部分室内循环风与室外新风混合,二者的比例由空调工艺决定,并假定在整个冬季保持不变。用两个蒸汽盘管加热器1SR、2SR对混合后的空气进行加热,加热后的空气通过送风机送入空调房间内。本设计中假设送风量保持不变。 设计主要任务是根据所选定的控制方案,建立起控制系统的数学模型,然后用MATLAB对控制系统进行仿真,通过对仿真结果的分析、比较,总结不同的控制方式和不同的调节规律对室温控制的影响。 三、主要参数 恒温室: 不考虑
3、纯滞后时: 容量系数 C1=1 送风量 G = 20 空气比热 c1= 0.24 围护结构热阻 r= 0.14 热水加热器SR、SR: 2 O空调温度控制系统 作为单容对象处理,不考虑容量滞后。 时间常数 T4=2.5 放大倍数 K4=15 电动调节阀: 比例系数 K3= 1.35 温度测量环节: 按比例环节处理,比例系数K2=0.8 调节器: 根据控制系统方案,可采用PI或PID调节规律。调节器参数按照过程控制系统工程整定原则,结合仿真确定。 四、设计内容及要求 1.过程建模 用机理分析法分别建立上述各环节的数学模型。 2系统设计 分别按单回路系统和串级系统方案构成控制系统,画出控制工艺图和
4、系统方块图。 3调节器参数整定 用MATLAB仿真手段,按过程控制系统调节器参数工程整定方法确定单回路系统控制器参数。 4仿真分析 对单回路系统,以加热器SR热水流量变化为主要干扰,在阶跃干扰作用下,通过仿真,分析比较调节器参数变化对系统的影响。 5串级控制系统仿真 用MATLAB仿真手段,按过程控制系统调节器参数工程整定方法确定串级系统控制器参数,并对干扰进行仿真分析,与单回路系统比较。 6. 设计报告 主要包括: 机理分析建模过程 分析工艺流程,确定控制方案,画出控制流程图、方框图,说明其工作原理。 用MATLAB仿真实现单回路系统调节器参数整定的过程 单回路系统的MATLAB仿真 串级系
5、统的MATLAB仿真 单回路系统与串级系统的MATLAB仿真比较 设计小结 3 空调温度控制系统 第二章 空调温度控制系统的数学建模 一、 恒温室的微分方程 为了研究上的方便,把图所示的恒温室看成一个单容对象,在建立数学模型,暂不考虑纯滞后。 1 微分方程的列写 根据能量守恒定律,单位时间内进入恒温室的能量减去单位时间内由恒温室流出的能量等于恒温室中能量蓄存的变化率。即 每小时进入室内每小时室内设备,照=+热量的变化率的空气的热量明和人体的散热量恒温室内蓄每小时从事内排每小时室内向-+出的空气的热量室外的传热量上述关系的数学表达式是: C1dqadt=(Gc1qc+qn)-(Gc1qa+qa-
6、qbg) (2-1) 式中 C1 恒温室的容量系数 ; qa室内空气温度,回风温度; G 送风量; c1 空气的比热; qc 送风温度; qn 室内散热量; qb室外空气温度; g恒温室围护结构的热阻。 将式整理为: C1Gc1+dqga+q1dtGc1qcGc1+1qn+1a=gqb1ggGc1+4 g空调温度控制系统 1q+nGc1g =qa+1Gc1Gc1+g (2-2) 或 T1dqadt+qa=K1(qc+qf) (2-3) 式中 T1=R1C1 恒温室的时间常数。 R1=1Gc1+1 为恒温室的热阻 g K1=Gc1Gc1+1 恒温室的放大系数; gqn+qbg qf=Gc1 室内
7、外干扰量换算成送风温度的变化。 式就是恒温室温度的数学模型。式中qc 和qf 是恒温的输入参数,或称输入量;而qf 是恒温室的输入参数或称被调量。输入参数是引起被调量变化的因素,其中起调节作用,而起干扰作用。输入量至输出量的信号联系称为通道。干扰量至被调量的信号联系称为干扰通道 。调节量至被调量的信号联系称为调节通道。 如果式中是qf个常量,即qf=qf0,则有 T1dqadt+qa=K1(qc+qf0) (2-4) 如果式中qc是个常量,即qc=qc0,则有 T1dqadt+qa=K1(qc0+qf) (2-5) 此时式成为只有被调节量和干扰量两个的微分方程式.此式也称为恒温室干扰通道的微分
8、方程式。 2 增量微分方程式的列写 在自动调节系统中,因主要考虑被调量偏离给定值的过渡过程.所以往往希望求出被调增量的变化过程.因此,我们要研究增量方程式的列写.所谓增量方程式就是输出参数增量与输入参数增量间关系的方程式。 5 空调温度控制系统 当恒温室处在过渡过程中,则有: c0+f0=a0 (2-6) qa=qa0+Dqa,qc=qc0+Dqc, qf=qf0+Dqf (2-7) 式中带“D” 项增量 将式(27)代入式得: T1dDqadtdDqadt+Dqa=-qa0+K1(qc0+qf0)+K1(Dqc+Dqf)(2-9) (2-8) 将式(26)代入式得: T1式中是恒温式增量微分
9、方程式的一般表达式,显然,它与式有相同的形式 。 对上式取拉式变换,可得恒温室的传递函数如下: W1=K1T1S+1+Dqa=K1(Dqc+Dqf)(2-10) 二、 热水加热器对象的微分方程 如前所述,水加热器可以是个双容对象,存在容量滞后,为了使研究问题简化,可以把图27水加热器看成是一个容量滞后的单容对象,这里先不考虑它的纯滞后,那么水加热器对象特性了用下述微分方程式来描述: T4dDqcdt+Dqc=K4DW+Dq0+Dqf 式中 Dqc 水加热器后空气温度的变化; T4 水加热器的时间常数; DW热水流量变化; Dq0水加器前送风温度的变化; Dqf4进入水加热器的热水温度的变化引起
10、的散热量变化折合成送风温度的变化; K4水加热器的放大系数。 他的物理意义是当热水流量变化一个单位是引起的散热量变化社和送风温度的变化。 当热水器前送风温度为常量且进入水加热的温度不变时,即Dq0=0 ,Dqf=0 ,由上式可以得到热水加热器1SR对象调节通道的微分方程式如下: 6 空调温度控制系统 T4dDqcdt当热水加热器前送风温度为常量且进入加热器的热水流量变化为常量,即 +Dqc=K4DW+Dq0+Dqf0(2-11) Dq0=0,DW=0 ,由上述可得到热水加热器2SR的对象 调节通道的微分方程式如下: 对上加热器1SR及2SR取拉式变换,可得二者传递函数的传递函数如下: W4(s
11、)=K4T4S+11T4S+1T4dqcdt+Dqc=Dqf4(2-12) (2-13) W4(s)=(2-14) 三、 敏感元件及变送器的微分方程 敏感元件及变送器也是自动调节系统中的一个重要组成部分,他是自动调节系统的“感觉器官”,调节器根据特的信号作用。 1敏感元件的微分方程 根据热平衡原理,热电阻每小时有周围介质吸收的热量与每小时周围介质传入的热量相等,故无套管热电阻的热量平衡方程式为: C2dqzdt=aF(qa-qz) (2-15) 式中 C2 热电阻热容量; qz 热电阻温度; qa 介质温度; a 介质对热电阻的传热系数; 2 F 热电阻的表面积 ; 由式 得 T2dqzdt+
12、qz=K2qa (2-16) 如令敏感元件的放大系数K2=1,则上式可写成 T2dqzdt+qz=qa(2-17) 1式中 T2=R2C2 敏感元件的时间常数,其中R2=aF 为敏感元件的7 空调温度控制系统 热阻力系数。 其时间常数与对象的时间常数相比较 ,一般都较小。当敏感元件的时间常数小到可以忽略时,式就变成 qz=K2qa (2-18) 2变送器的特性及微分方程 采用电动单元组合仪表时,一般需要将被测的信号转换成统一010毫安的电流信号,采用气动单元组合仪表需转换成统一的0.21.0公斤 厘米信号。他们在转换时其时间常数和之滞后时间都很小,可以略去不计。所以实际上相当于一个放大环节。此
13、时变送器特性可用下式表示: BZ=KBqZ2(2-19) 式中 BZ经变送器将成比例变幻后的相应信号; qZ敏感元件反映的被测参数; KB变送器的防大系数。 四、 敏感元件及变送器特性 考虑到敏感元件为一阶惯性元件,二变送器为比例环节,将式代入式得: T2其增量方程式: T2dBZdt+BZ=K2KBqa(2-20) dDBZdt+DBZ=K2KBDqa(2-21) 如果敏感元件的时间常数的数值与对象常数比值可略去时,则有: DBZ=K2KBDqa(2-22) 即敏感元件加变送器这一环节可以看成是一个比例环节。 对敏感器及变送器微分方程取拉式变换可得其传递函数如下: W(s)=K2(2-23)
14、 五、 执行器的特性 执行器是调节系统中得一个重要组成部分,人们把它比喻成工艺自动化的“手脚”.它的特性也将直接印象调节系统的调节质量,根据流量平衡关系,可列出气动执行机构的微分方程式如下: 8 空调温度控制系统 T3dWdt+W=akFDP(2-24) 式中 T3=R3C3 气动执行机构的时间常数 ; 3米C3薄膜式的容量系数,并假定为常数; 3公斤/厘米公斤/厘米2R3是从调节器到调节阀之间到导管的阻力系数; 3米/小时W热水流量; P调节起来的气压信号; a流量系数; k执行器的弹簧的弹簧系数; 在实际应用中,一般都将气动调节阀作为一阶惯性环节来处理,其时间常数为数秒之数十秒之间,而对象
15、时间常数较大时,可以把气动调节发作为放大环节来处理、则简化的调节系统的微分方程如下: DW=akFDP(2-25) (2-26) DW=K3DP式中 K3=ak 气动调节阀的防大系数。 对敏感器及变送器微分方程取拉式变换可得其传递函数如下: W3(s)=K3(2-27)第三章 空调温度控制系统设计 一、工艺过程描述 设计背景为一个集中式空调系统的冬季温度控制环节,简化系统图如附图1所示,控制工艺流程如附图2所示。 系统由空调房间、送风道、送风机、加热设备及调节阀门等组成。为了节约能量,利用一部分室内循环风与室外新风混合,二者的比例由空调工艺决定,并假定在整个冬季保持不变。用两个蒸汽盘管加热器1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空调 温度 控制系统

链接地址:https://www.31ppt.com/p-3123012.html