数学建模非线性规划模型用MATLAB++LINGO课件.ppt
《数学建模非线性规划模型用MATLAB++LINGO课件.ppt》由会员分享,可在线阅读,更多相关《数学建模非线性规划模型用MATLAB++LINGO课件.ppt(68页珍藏版)》请在三一办公上搜索。
1、非线性规划,讲义大纲:,1.非线性规划的定义和相关概念.2.常用的求解非线性规划的方法.3.MATLAB求解非线性规划及例题.4.lingo求解非线性规划及例题.5.练习.,非现性规划的基本概念,定义 如果目标函数或约束条件中至少有一个是非线性函数时的最优化问题就叫做非线性规划问题,一般形式:(1)其中,是定义在 En 上的实值函数,简记:,其它情况:求目标函数的最大值或约束条件为小于等于零的情况,都可通过取其相反数化为上述一般形式,定义1 把满足问题(1)中条件的解 称为可行解(或可行点),所有可行点的集合称为可行集(或可行域)记为D即 问题(1)可简记为,定义2 对于问题(1),设,若存在
2、,使得对一切,且,都有,则称X*是f(X)在D上的局部极小值点(局部最优解)特别地当 时,若则称X*是f(X)在D上的严格局部极小值点(严格局部最优解),定义3 对于问题(1),设,对任意的,都有 则称X*是f(X)在D上的全局极小值点(全局最优解)特别地当 时,若,则称X*是f(X)在D上的严格全局极小值点(严格全局最优解),返回,非线性规划的基本解法,SUTM外点法,SUTM内点法(障碍罚函数法),1、罚函数法,2、近似规划法,返回,罚函数法,罚函数法基本思想是通过构造罚函数把约束问题转化为一系列无约束最优化问题,进而用无约束最优化方法去求解这类方法称为序列无约束最小化方法(Sequent
3、ial Unconstrained Minization Technique)简称为SUMT法其一为SUMT外点法,其二为SUMT内点法,其中T(X,M)称为罚函数,M称为罚因子,带M的项称为罚项,这里的罚函数只对不满足约束条件的点实行惩罚:当 时,满足各,故罚项=0,不受惩罚当 时,必有 的约束条件,故罚项0,要受惩罚,SUTM外点法,罚函数法的缺点是:每个近似最优解Xk往往不是容许解,而只能近似满足约束,在实际问题中这种结果可能不能使用;在解一系列无约束问题中,计算量太大,特别是随着Mk的增大,可能导致错误,1、任意给定初始点X0,取M11,给定允许误差,令k=1;2、求无约束极值问题 的
4、最优解,设为Xk=X(Mk),即;3、若存在,使,则取MkM()令k=k+1返回(2),否则,停止迭代得最优解.计算时也可将收敛性判别准则 改为.,SUTM外点法(罚函数法)的迭代步骤,例题.min x2 s.t.x=1 显然本问题的最优解为x*=1,用SMT外点法:T(x,M)=x2+Mmin(0,x-1)2=求minT(x,M).本题可由 T(x,M)=2x+2M(x-1)=0,解得:x=M/(1+M),M趋于无穷.可知x从小于1趋于1,罚函数从外部趋于最优解.,SUTM内点法(障碍函数法),内点法的迭代步骤,例题.min x2 s.t.x=1 显然本问题的最优解为x*=1,用SMT内点法
5、:罚函数I(x,rk)=x2 rkln(x-1),求其最值.可见,x从大于1趋于1.,近似规划法的基本思想:将问题(3)中的目标函数 和约束条件 近似为线性函数,并对变量的取值范围加以限制,从而得到一个近似线性规划问题,再用单纯形法求解之,把其符合原始条件的最优解作为(3)的解的近似,近似规划法,每得到一个近似解后,都从这点出发,重复以上步骤,这样,通过求解一系列线性规划问题,产生一个由线性规划最优解组成的序列,经验表明,这样的序列往往收敛于非线性规划问题的解。,近似规划法的算法步骤如下,返回,例题1、用近似规划法求解下列问题。,解:第一次迭代:在点x1处将g1(x),g2(x)线性化。,步长
6、限制:,解(1)(2)(3)(4),得,检验,可得x2不满足原始约束。,第二次迭代,减少,解(1,2,3,5),得x2=(4,3)T,f(x2)=-11.所以x2为最小值点.,用MATLAB软件求解,其输入格式如下:1.x=quadprog(H,C,A,b);2.x=quadprog(H,C,A,b,Aeq,beq);3.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB);4.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB,X0);5.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB,X0,options);6.x,fval=qua
7、prog(.);7.x,fval,exitflag=quaprog(.);8.x,fval,exitflag,output=quaprog(.);,1、二次规划,例1 min f(x1,x2)=-2x1-6x2+x12-2x1x2+2x22 s.t.x1+x22-x1+2x22 x10,x20,1、写成标准形式:,2、输入命令:H=1-1;-1 2;c=-2;-6;A=1 1;-1 2;b=2;2;Aeq=;beq=;VLB=0;0;VUB=;x,z=quadprog(H,c,A,b,Aeq,beq,VLB,VUB),3、运算结果为:x=0.6667 1.3333 z=-8.2222,s.t.
8、,1.首先建立M文件fun.m,定义目标函数F(X):function f=fun(X);f=F(X);,2、一般非线性规划,其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成的向量,其它变量的含义与线性规划、二次规划中相同.用Matlab求解上述问题,基本步骤分三步:,3.建立主程序.非线性规划求解的函数是fmincon,命令的基本格式如下:(1)x=fmincon(fun,X0,A,b)(2)x=fmincon(fun,X0,A,b,Aeq,beq)(3)x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB)(4)x=fmincon(fun,X0,A,b,A
9、eq,beq,VLB,VUB,nonlcon)(5)x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB,nonlcon,options)(6)x,fval=fmincon(.)(7)x,fval,exitflag=fmincon(.)(8)x,fval,exitflag,output=fmincon(.),输出极值点,M文件,迭代的初值,参数说明,变量上下限,注意:1 fmincon函数提供了大型优化算法和中型优化算法。默认时,若在fun函数中提供了梯度(options参数的GradObj设置为on),并且只有上下界存在或只有等式约束,fmincon函数将选择大型算法。当
10、既有等式约束又有梯度约束时,使用中型算法。2 fmincon函数的中型算法使用的是序列二次规划法。在每一步迭代中求解二次规划子问题,并用BFGS法更新拉格朗日Hessian矩阵。3 fmincon函数可能会给出局部最优解,这与初值X0的选取有关。,1、写成标准形式:s.t.,2x1+3x2 6 s.t x1+4x2 5 x1,x2 0,例2,2、先建立M-文件 fun3.m:function f=fun3(x);f=-x(1)-2*x(2)+(1/2)*x(1)2+(1/2)*x(2)2,3、再建立主程序youh2.m:x0=1;1;A=2 3;1 4;b=6;5;Aeq=;beq=;VLB=
11、0;0;VUB=;x,fval=fmincon(fun3,x0,A,b,Aeq,beq,VLB,VUB),4、运算结果为:x=0.7647 1.0588 fval=-2.0294,1先建立M文件 fun4.m,定义目标函数:function f=fun4(x);f=exp(x(1)*(4*x(1)2+2*x(2)2+4*x(1)*x(2)+2*x(2)+1);,例3,2再建立M文件mycon.m定义非线性约束:function g,ceq=mycon(x)g=x(1)+x(2);ceq=1.5+x(1)*x(2)-x(1)-x(2);-x(1)*x(2)-10;,3主程序youh3.m为:x0
12、=-1;1;A=;b=;Aeq=1 1;beq=0;vlb=;vub=;x,fval=fmincon(fun4,x0,A,b,Aeq,beq,vlb,vub,mycon),3.运算结果为:x=-1.2250 1.2250 fval=1.8951,例4,1先建立M-文件fun.m定义目标函数:function f=fun(x);f=-2*x(1)-x(2);,2再建立M文件mycon2.m定义非线性约束:function g,ceq=mycon2(x)g=x(1)2+x(2)2-25;x(1)2-x(2)2-7;,3.主程序fxx.m为:x0=3;2.5;VLB=0 0;VUB=5 10;x,f
13、val,exitflag,output=fmincon(fun,x0,VLB,VUB,mycon2),4.运算结果为:x=4.0000 3.0000fval=-11.0000exitflag=1output=iterations:4 funcCount:17 stepsize:1 algorithm:1x44 char firstorderopt:cgiterations:,应用实例:供应与选址,某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系a,b表示,距离单位:千米)及水泥日用量d(吨)由下表给出。目前有两个临时料场位于A(5,1),B(2,7),日储量各有20吨。假设从料场到工地
14、之间均有直线道路相连。(1)试制定每天的供应计划,即从A,B两料场分别向各工地运送多少吨水泥,使总的吨千米数最小。(2)为了进一步减少吨千米数,打算舍弃两个临时料场,改建两个新的,日储量各为20吨,问应建在何处,节省的吨千米数有多大?,(一)、建立模型,记工地的位置为(ai,bi),水泥日用量为di,i=1,6;料场位置为(xj,yj),日储量为ej,j=1,2;从料场j向工地i的运送量为Xij。,当用临时料场时决策变量为:Xij,当不用临时料场时决策变量为:Xij,xj,yj。,(二)使用临时料场的情形,使用两个临时料场A(5,1),B(2,7).求从料场j向工地i的运送量为Xij,在各工地
15、用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,这是线性规划问题.线性规划模型为:,设X11=X1,X21=X 2,X31=X 3,X41=X 4,X51=X 5,X61=X 6X12=X 7,X22=X 8,X32=X 9,X42=X 10,X52=X 11,X62=X 12 编写程序gying1.m,gying1.m,clear a=1.25 8.75 0.5 5.75 3 7.25;b=1.25 0.75 4.75 5 6.5 7.75;d=3 5 4 7 6 11;x=5 2;y=1 7;e=20 20;for i=1:6 for j=1:2 aa(i,j)=sqr
16、t(x(j)-a(i)2+(y(j)-b(i)2);endendCC=aa(:,1);aa(:,2);,A=1 1 1 1 1 1 0 0 0 0 0 0;0 0 0 0 0 0 1 1 1 1 1 1;B=20;20;Aeq=1 0 0 0 0 0 1 0 0 0 0 0%从第一二料场运到工地一的料 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1;beq=d(1);d(2);d(3);d(4);d(5)
17、;d(6);VLB=0 0 0 0 0 0 0 0 0 0 0 0;VUB=;x0=1 2 3 0 1 0 0 1 0 1 0 1;xx,fval=linprog(CC,A,B,Aeq,beq,VLB,VUB,x0),计算结果为:,x=3.0000 5.0000 0.0000 7.0000 0.0000 1.0000 0.0000 0.0000 4.0000 0.0000 6.0000 10.0000fval=136.2275,(三)改建两个新料场的情形,改建两个新料场,要同时确定料场的位置(xj,yj)和运送量Xij,在同样条件下使总吨千米数最小。这是非线性规划问题。非线性规划模型为:用li
18、ngo解此题 MODEL:,设 X11=X1,X21=X 2,X31=X 3,X41=X 4,X51=X 5,X61=X 6 X12=X 7,X22=X 8,X32=X 9,X42=X 10,X52=X 11,X62=X 12 x1=X13,y1=X14,x2=X15,y2=X16,(1)先编写M文件liaoch.m定义目标函数。,(2)取初值为线性规划的计算结果及临时料场的坐标:x0=3 5 0 7 0 1 0 0 4 0 6 10 5 1 2 7;编写主程序gying2.m.,function f=liaoch(x)a=1.25 8.75 0.5 5.75 3 7.25;b=1.25 0.
19、75 4.75 5 6.5 7.75;d=3 5 4 7 6 11;e=20 20;f1=0;for i=1:6 s(i)=sqrt(x(13)-a(i)2+(x(14)-b(i)2);f1=s(i)*x(i)+f1;endf2=0;for i=7:12 s(i)=sqrt(x(15)-a(i-6)2+(x(16)-b(i-6)2);f2=s(i)*x(i)+f2;endf=f1+f2;,clear%x0=3 5 0 7 0 1 0 0 4 0 6 10 5 1 2 7;%x0=3.0000 5.0000 0.0707 7.0000 0 0.9293 0 0 3.9293 0 6.0000 1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 非线性 规划 模型 MATLAB LINGO 课件
链接地址:https://www.31ppt.com/p-3051739.html