整流在材料加工设备中的应用.doc
《整流在材料加工设备中的应用.doc》由会员分享,可在线阅读,更多相关《整流在材料加工设备中的应用.doc(12页珍藏版)》请在三一办公上搜索。
1、目录第一章 晶闸管2第二章 单相可控整流电路22.1 单相桥式半波整流电路22.2 单相桥式全控整流电路42.3 单相全波可控整流电路42.4 单相桥式半控整流电路5第三章 三相可控整流电路63.1 三相半波可控整流电路63.2 三相桥式全控整流电路7第四章 整流器工作原理94.1 桥式整流器原理电路94.2 对整流电路的意义有一下总结10参考文献12第一章 晶闸管闸管在自动控制控制,机电领域,工业电气及家电等方面都有广泛的应用。晶闸管是一种有源开关元件,平时它保持在非道通状态,直到由一个较少的控制信号对其触发或称“点火”使其道通,一旦被点火就算撤离触发信号它也保持道通状态,要使其截止可在其阳
2、极与阴极间加上反向电压或将流过晶闸管的电流减少到某一个值以下。晶闸管的工作原理分析:晶闸管可用两个不同极性(P-N-P和N-P-N)晶体管来模拟,如图G1所示。当晶闸管的栅极悬空时,BG1和BG2都处于截止状态,此时电路基本上没有电流流过负载电阻RL,当栅极输入一个正脉冲电压时BG2道通,使BG1的基极电位下降,BG1因此开始道通,BG1的道通使得BG2的基极电位进一步升高,BG1的基极电位进一步下降,经过这一个正反馈过程使BG1和BG2进入饱和道通状态。电路很快从截止状态进入道通状态,这时栅极就算没有触发脉冲电路由于正反馈的作用将保持道通状态不变。如果此时在阳极和阴极加上反向电压,由于BG1
3、和BG2均处于反向偏置状态所以电路很快截止,另外如果加大负载电阻RL的阻值使电路电流减少BG1和BG2的基电流也将减少,当减少到某一个值时由于电路的正反馈作用,电路将很快从道通状态翻转为截止状态,我们称这个电流为维持电流。在实际应用中,我们可通过一个开关来短路晶闸管的阳极和阴极从而达到晶闸管的关断。晶闸管应用举例:晶闸管在实际应用中电路花样最多的是其栅极触发回路,概括起来有直流触发电路,交流触发电路,相位触发电路等等。晶第二章 单相可控整流电路2.1 单相桥式半波整流电路a、带电阻负载的工作情况Single Phase Half Wave Controlled Rectifier.变压器T起变
4、换电压和隔离的作用。 电阻负载的特点:电压与电流成正比,两者波形相同结合图2-1进行工作原理及波形分析。几个概念的解释:Ud为脉动直流,波形只在U2正半周内出现,故称“半波”整流。采用了可控器件晶闸管,且交流输入为单相,故该电路为单相半波可控整流电路。Ud波形在一个电源周期中只脉动1次,故该电路为单脉波整流电路。 几个重要的基本概念:图2-1 单形触发延迟角:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a表示,也称触发角或控制角。导通角:晶闸管在一个电源周期中处于通态的电角度称为,用表示。 基本数量关系。直流输出电压平均值为:(2-1) VT的a 移相范围为180。这种通过控制触
5、发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式,简称相控方式。直流回路的平均电流为: (2-2)回路中的电流有效值为: (2-3)由式2. 2、式2. 3可得流过晶闸管的电流波形系数: (2-4)电源供给的有功功率为: (2-5)其中U为R上的电压有效值:电源侧的输入功率为:功率因素为: (2-6)当=0时,越大,cos越低,=。可见,尽管是电阻负载,电源的功率因素也不为1。这是单相半波电路的缺陷。2.2 单相桥式全控整流电路单相整流电路中应用较多的a 带电阻负载的工作情况工作原理及波形分析:VT1和VT4组成一对桥臂,在u2正半周承受电压u2,得到触发脉冲即导通,当u2过零时关断;
6、VT2和VT3组成另一对桥臂,在u2正半周承受电压-u2,得到触发脉冲即导通,当u2过零时关断。 数量关系:(2-7)a 角的移相范围为180。2.3 单相全波可控整流电路 单相全波与单相全控桥从直流输出端或从交流输入端看均是基本一致的。 两者的区别:(1)单相全波中变压器结构较复杂,绕组及铁芯对铜、铁等材料的消耗多;(2)单相全波只用2个晶闸管,比单相全控桥少2个,相应地,门极驱动电路也少2个;但是晶闸管承受的最大电压为 ,是单相全控桥的2倍;(3)单相全波导电回路只含1个晶闸管,比单相桥少1个,因而管压降也少1个从上述(2)、(3)考虑,单相全波电路有利于在低输出电压的场合应用。2.4 单
7、相桥式半控整流电路单相全控桥中,每个导电回路中有2个晶闸管,为了对每个导电回路进行控制,只需1个晶闸管就可以了,另1个晶闸管可以用二极管代替,从而简化整个电路。如此即成为单相桥式半控整流电路(先不考虑VDR)。 半控电路与全控电路在电阻负载时的工作情况相同,单相半控桥带阻感负载的情况,假设负载中电感很大,且电路已工作于稳态。在u2正半周,触发角a处给晶闸管VT1加触发脉冲,u2经VT1和VD4向负载供电u2过零变负时,因电感作用使电流连续,VT1继续导通。但因a点电位低于b点电位,使得电流从VD4转移至VD2,VD4关断,电流不再流经变压器二次绕组,而是由VT1和VD2续流在u2负半周触发角a
8、时刻触发VT3,VT3导通,则向VT1加反压使之关断,u2经VT3和VD2向负载供电。u2过零变正时,VD4导通,VD2关断。VT3和VD4续流,ud又为零续流二极管的作用。若无续流二极管,则当a突然增大至180或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,称为失控。有续流二极管VDR时,续流过程由VDR完成,晶闸管关断,避免了某一个晶闸管持续导通从而导致失控的现象。同时,续流期间导电回路中只有一个管压降,有利于降低损耗单相桥式半控整流电路的另一种接法相当于把图2-4a中的VT3和VT4换为
9、二极管VD3和VD4,这样可以省去续流二极管VDR,续流由VD3和VD4来实现。第三章 三相可控整流电路 3.1 三相半波可控整流电路a 电阻负载 电路的特点:变压器二次侧接成星形得到零线,而一次侧接成三角形避免3次谐波流入电网三个晶闸管分别接a、b、c三相电源,其阴极连接在一起共阴极接a =0时的工作原理分析假设将电路中的晶闸管换作二极管,成为三相半波不可控整流电路。此时,相电压最大的一个所对应的二极管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相电压一周期中,在t1wt2期间,VD1导通,ud=ua在wt2wt3期间, VD2导通,ud=ub在wt3 wt4期间,VD3导通
10、,ud=uc二极管换相时刻为自然换相点,是各相晶闸管能触发导通的最早时刻,将其作为计算各晶闸管触发角a的起点,即a =0变压器二次侧a相绕组和晶闸管VT1的电流波形,变压器二次绕组电流有直流分量晶闸管的电压波形,由3段组成:第1段,VT1导通期间,为一管压降,可近似为uT1=0第2段,在VT1关断后,VT2导通期间,uT1=ua-ub=uab,为一段线电压第3段,在VT3导通期间,uT1=ua-uc=uac为另一段线电压增大a值,将脉冲后移,整流电路的工作情况相应地发生变化 a=30时的波形负载电流处于连续和断续之间的临界状态 a30的情况。特点:负载电流断续,晶闸管导通角小于120电阻负载时
11、a角的移相范围为150整流电压平均值的计算(1)a30时,负载电流连续当a=0时,Ud最大,为 。(2)a30时,负载电流断续, 晶闸管导通角减小,此时有:负载电流平均值为:晶闸管承受的最大反向电压,不难看出为变压器二次线电压峰值,即: 由于晶闸管阴极与零点间的电压即为整流输出电压ud,其最小值为零,而晶闸管阳极与零点间的最高电压等于变压器二次相电压的峰值,因此晶闸管阳极与阴极间的最大电压等于变压器二次相电压的峰值,即b 阻感负载特点:阻感负载,L值很大,id波形基本平直: a30时:整流电压波形与电阻负载时相同; a 30时,u2过零时,VT1不关断,直到VT2的脉冲到来,才换流,由VT2导
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整流 材料 加工 设备 中的 应用
链接地址:https://www.31ppt.com/p-2988828.html