微电子器件与工艺课程设计PNP双极型晶体管的设计.doc
《微电子器件与工艺课程设计PNP双极型晶体管的设计.doc》由会员分享,可在线阅读,更多相关《微电子器件与工艺课程设计PNP双极型晶体管的设计.doc(30页珍藏版)》请在三一办公上搜索。
1、 目 录1.课程设计目的与任务22.设计的内容2 3. 设计的要求与数据24.物理参数设计3 4.1 各区掺杂浓度及相关参数的计算3 4.2 集电区厚度Wc的选择6 4.3 基区宽度WB6 4.4 扩散结深10 4.5 芯片厚度和质量10 4.6 晶体管的横向设计、结构参数的选择105.工艺参数设计11 5.1 工艺部分杂质参数11 5.2 基区相关参数的计算过程11 5.3 发射区相关参数的计算过程13 5.4 氧化时间的计算146.设计参数总结167.工艺流程图178.生产工艺流程199.版图2810.心得体会2911.参考文献30 PNP双极型晶体管的设计1、课程设计目的与任务微电子器件
2、与工艺课程设计是继微电子器件物理、微电子器件工艺和半导体物理理论课之后开出的有关微电子器件和工艺知识的综合应用的课程,使我们系统的掌握半导体器件,集成电路,半导体材料及工艺的有关知识的必不可少的重要环节。目的是使我们在熟悉晶体管基本理论和制造工艺的基础上,掌握晶体管的设计方法。要求我们根据给定的晶体管电学参数的设计指标,完成晶体管的纵向结构参数设计晶体管的图形结构设计材料参数的选取和设计制定实施工艺方案晶体管各参数的检测方法等设计过程的训练,为从事微电子器件设计、集成电路设计打下必要的基础。2、设计的内容设计一个均匀掺杂的pnp型双极晶体管,使T=300K时,=120,VCEO=15V,VCB
3、O=80V.晶体管工作于小注入条件下,最大集电极电流为IC=5mA。设计时应尽量减小基区宽度调制效应的影响。3、设计的要求与数据(1)了解晶体管设计的一般步骤和设计原则。(2)根据设计指标设计材料参数,包括发射区、基区和集电区掺杂浓度NE, NB, 和NC,根据各区的掺杂浓度确定少子的扩散系数,迁移率,扩散长度和寿命 等。(3) 根据主要参数的设计指标确定器件的纵向结构参数,包括集电区厚度Wc, 基本宽度Wb,发射区宽度We和扩散结深Xjc,发射结结深Xje等。(4) 根据扩散结深Xjc,发射结结深Xje等确定基区和发射区预扩散和再扩散的扩 散温度和扩散时间;由扩散时间确定氧化层的氧化温度、氧
4、化厚度和氧化 时间。(5) 根据设计指标确定器件的图形结构,设计器件的图形尺寸,绘制出基区、 发射区和金属接触孔的光刻版图。 (6)根据现有工艺条件,制定详细的工艺实施方案。4、物理参数设计 4.1 各区掺杂浓度及相关参数的计算 击穿电压主要由集电区电阻率决定。因此,集电区电阻率的最小值由击穿电压决定,在满足击穿电压要求的前提下,尽量降低电阻率,并适当调整其他参量,以满足其他电学参数的要求。对于击穿电压较高的器件,在接近雪崩击穿时,集电结空间电荷区已扩展至均匀掺杂的外延层。因此,当集电结上的偏置电压接近击穿电压V时,集电结可用突变结近似,对于Si器件击穿电压为 , 由此可得集电区杂质浓度为:
5、由设计的要求可知C-B结的击穿电压为: 根据公式,可算出集电区杂质浓度: 一般的晶体管各区的浓度要满足NENBNC,根据以往的经验可取: 即各区的杂质溶度为: 图1 室温下载流子迁移率与掺杂浓度的函数关系(器件物理P55)根据图1,得到少子迁移率: 根据公式可得少子的扩散系数: 图2 掺杂浓度与电阻率的函数关系(器件物理P59)根据图2,可得到不同杂质浓度对应的电阻率: 图3 少子寿命与掺杂浓度的函数关系(半导体物理P177)根据图3,可得到各区的少子寿命 根据公式得出少子的扩散长度: 4.2 集电区厚度Wc的选择根据公式求出集电区厚度的最小值为:WC的最大值受串联电阻rcs的限制。增大集电区
6、厚度会使串联电阻rcs增加,饱和压降VCES增大,因此WC的最大值受串联电阻限制。 综合考虑这两方面的因素,故选择WC=8m 4.3 基区宽度WB (1)基区宽度的最大值 对于低频管,与基区宽度有关的主要电学参数是b,因此低频器件的基区宽度最大值由b确定。当发射效率1时,电流放大系数,因此基区宽度的最大值可按下式估计: 为了使器件进入大电流状态时,电流放大系数仍能满足要求,因而设计过程中取=4。根据公式,求得低频管的基区宽度的最大值为:由公式可看出,电流放大系数要求愈高,则基区宽度愈窄。为提高二次击穿耐量,在满足要求的前提下,可以将基区宽度选的宽一些,使电流在传输过程中逐渐分散开,以提高二次击
7、穿耐性。 (2)基区宽度的最小值为了保证器件正常工作,在正常工作电压下基区绝对不能穿通。因此,对于高耐压器件,基区宽度的最小值由基区穿通电压决定,此处,对于均匀基区晶体管,当集电结电压接近雪崩击穿时,基区一侧的耗尽层宽度为: 在高频器件中,基区宽度的最小值往往还受工艺的限制。则由上述计算可知基区的范围为: (3)基区宽度的具体设计与PN结二极管的分析类似,在平衡和标准工作条件下,BJT可以看成是由两个独立的PN结构成,它在平衡时的结构图如下所示: 图4 平衡条件下的PNP三极管的示意图 具体来说,由于,所以E-B耗尽区宽度()可近视看作全部位于基区内,又由,得到大多数C-B耗尽区宽度()位于集
8、电区内。因为C-B结轻掺杂一侧的掺杂浓度比E-B结轻掺杂一侧的浓度低,所以。另外注意到是基区宽度,是基区中准中性基区宽度;也就是说,对于PNP晶体管,有:其中和分别是位于N型区内的E-B和C-B耗尽区宽度,在BJT分析中指的就是准中性基区宽度。E-B结的内建电势为:C-B结的内建电势为:根据公式,E-B结在基区一边的耗尽层宽度为: ,可以当成单边突变结处理 C-B结在基区一边的耗尽层厚度为: 对于准中性基区宽度W,取基区宽度,则 验证其取值的准确性,根据公式有: 解得的接近于设计的要求,符合设计指标,所以基区宽度为,满足条件。 4.4 扩散结深在晶体管的电学参数中,击穿电压与结深关系最为密切,
9、它随结深变浅,曲率半径减小而降低,因而为了提高击穿电压,要求扩散结深一些。但另一方面,结深却又受条宽限制,由于基区积累电荷增加,基区渡越时间增长,有效特征频率就下降,因此,通常选取:反射结结深为 集电结结深为 4.5 芯片厚度和质量本设计选用的是电阻率为的P型硅,晶向是。硅片厚度主要由集电结深、集电区厚度、衬底反扩散层厚度决定。同时扩散结深并不完全一致,在测量硅片厚度时也存在一定误差。因此在选取硅片厚度时必须留有一定的的余量。衬底厚度要选择适当,若太薄,则易碎,且不易加工;若太厚,则芯片热阻过大。因此,在工艺操作过程中,一般硅片的厚度都在300um以上,但最后要减薄到150200um。硅片的质
10、量指标主要是要求厚度均匀,电阻率符合要求,以及材料结构完整、缺陷少等。 4.6 晶体管的横向设计、结构参数的选择 (1)横向设计进行晶体管横向设计的任务,是根据晶体管主要电学参数指标的要求,选取合适的几何图形,确定图形尺寸,绘制光刻版图。晶体管的图形结构种类繁多:从电极配置上区分,有延伸电极和非延伸电极之分;从图形形状看,有圆形、梳状、网格、覆盖、菱形等不同的几何图形。众多的图形结构各有其特色。此次设计的晶体管只是普通的晶体管,对图形结构没有特别的要求,所以只是采用普通的单条形结构。三极管剖面图如图5,三极管俯视图如图6。图5:三极管剖面图图6:三极管俯视图(2)基区和发射区面积发射区面积取基
11、区面积取。5、工艺参数设计 5.1 工艺部分杂质参数 杂质元素 磷(P)3.853.66 硼(B)0.763.46 表1 硅中磷和硼的与(微电子工艺基础119页表5-1) 5.2 基区相关参数的计算过程 5.2.1 预扩散时间PNP基区的磷预扩散的温度取1080,即1353K。单位面积杂质浓度: 由上述表1可知磷在硅中有: 为了方便计算,取由公式 ,得出基区的预扩散时间: 5.2.2 氧化层厚度 氧化层厚度的最小值由预扩散(1353K)的时间t=964.84s来决定的,且服从余误差分布,并根据假设可求 ,由一些相关资料可查出磷(P)在温度1080时在中的扩散系数:考虑到生产实际情况,基区氧化层
12、厚度取为6000。 5.2.3 基区再扩散的时间PNP基区的磷再扩散的温度这里取1200。由一些相关资料可查出磷的扩散系数: 由于预扩散的结深很浅,可将它忽略,故,由再扩散结深公式:,而且 , 故可整理为: 即经过化简得: 解得基区再扩散的时间: t=9050s=2.5h 5.3 发射区相关参数的计算过程 5.3.1 预扩散时间 PNP发射区的硼预扩散的温度这里取950,即1223K。单位面积杂质浓度: 由上述表1可知硼在硅中有: 为了方便计算,取由公式 ,得出发射区的预扩散时间: 5.3.2 氧化层厚度 氧化层厚度的最小值由预扩散(1353K)的时间t=1683s来决定的,且服从余误差分布,
13、并根据假设可求 ,由一些相关资料可查出硼(B)在温度950时在中的扩散系数:考虑到生产实际情况,基区氧化层厚度取为7000。 5.3.3 发射区再扩散的时间PNP基区的磷再扩散的温度这里取1170,即1443K,则 由于预扩散的结深很浅,可将它忽略,故,由再扩散结深公式:,而且 , 故可整理为: 即经过化简得: 解得基区再扩散的时间: t=8700s=2.4h 5.4 氧化时间的计算 5.4.1 基区氧化时间由前面得出基区氧化层厚度是6000,可以采用干氧湿氧干氧的工艺,将6000的氧化层的分配成如下的比例进行氧化工艺: 干氧:湿氧:干氧=1:4:1即先干氧1000(0.1um),再湿氧400
14、0(0.4um),再干氧1000(0.1um)取干氧和湿氧的氧化温度为1200,由图7可得出:干氧氧化1000的氧化层厚度需要的时间为:湿氧氧化4000的氧化层厚度需要的时间为:所以,基区总的氧化时间为: 图7 氧化时间与氧化厚度的关系图 5.4.2 发射区氧化时间由前面得出发射区氧化层厚度是7000,可以采用干氧湿氧干氧的工艺,将7000的氧化层的分配成如下的比例进行氧化工艺: 干氧:湿氧:干氧=1:5:1即先干氧1000(0.1um),再湿氧5000(0.5um),再干氧1000(0.1um)取干氧和湿氧的氧化温度为1200,由图7可得出:干氧氧化1000的氧化层厚度需要的时间为:湿氧氧化
15、5000的氧化层厚度需要的时间为:所以,发射区总的氧化时间为:6、设计参数总结 采用外延硅片,其衬底的电阻率为7的P型硅,选取晶向。相关参数集电区C基区B发射区E各区杂质浓度少子迁移率1300330150少子扩散系数33.88.583.90电阻率1.170.10.014少子寿命扩散长度结深/W()面积(2)1200600100扩散温度()和时间预扩散/1080,964.84950, 1683再扩散/1200,90501170,8700氧化层厚度()/60007000氧化时间/先干氧氧化20.4分钟,后湿氧氧化16.2分钟,再干氧氧化20.4分钟,共氧化57分钟。先干氧氧化20.4分钟,后湿氧氧
16、化24分钟,再干氧氧化20.4分钟,共氧化64.8分钟 表2 设计参数总表7、工艺流程图PNP晶体管生产总的工艺流程图如下: 8、生产工艺流程 8.1 硅片清洗1.清洗原理:a. 表面活性剂的增溶作用:表面活性剂浓度大于临界胶束浓度时会在水溶液中 形成胶束,能使不溶或微溶于水的有机物的溶解度显著增大。b.表面活性剂的润湿作用:固气界面消失,形成固液界面c.起渗透作用;利用表面活性剂的润湿性降低溶液的表面张力后,再由渗透剂的 渗透作用将颗粒托起,包裹起来。具有极强渗透力的活性剂分子可深入硅片表 面与吸附物之间,起劈开的作用,活性剂分子将颗粒托起并吸附于硅片表面上, 降低表面能。颗粒周围也吸附一层
17、活性剂分子,防止颗粒再沉积。通过对污染物进行化学腐蚀、物理渗透和机械作用,达到清洗硅片的目的。硅片清洗液是指能够除去硅片表面沾污物的化学试剂或几种化学试剂配制的 混合液。常用硅片清洗液有:名称配方使用条件作用号洗液NH4OH:H2O2:H2O=1:1:51:2:780510min去油脂去光刻胶残膜去金属离子去金属原子号洗液HCl:H2O2:H2O=1:1:61:2:880510min去金属离子去金属原子号洗液H2SO4:H2O2=3:1120101015min去油、去腊去金属离子去金属原子 8.2 氧化工艺 8.2.1 氧化原理二氧化硅能够紧紧地依附在硅衬底表面,具有极稳定的化学性和电绝缘性,
18、因此,二氧化硅可以用来作为器件的保护层和钝化层,以及电性能的隔离、绝缘材料和电容器的介质膜。二氧化硅的另一个重要性质,对某些杂质(如硼、磷、砷等)起到掩蔽作用,从而可以选择扩散;正是利用这一性质,并结合光刻和扩散工艺,才发展起来平面工艺和超大规模集成电路。制备二氧化硅的方法很多,但热氧化制备的二氧化硅掩蔽能力最强,是集成电路工艺最重要的工艺之一。由于热生长制造工艺设备简单,操作方便,SiO2膜较致密,所以采用热氧化二氧化硅制备工艺。热生长的方法是将硅片放入高温炉内,在氧气氛中使硅片表面在氧化物质作用下生长SiO2薄层,氧化气氛可为水汽,湿氧或干氧。实验表明,水汽氧化法:生长速率最快,但生成的S
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微电子 器件 工艺 课程设计 PNP 双极型 晶体管 设计
链接地址:https://www.31ppt.com/p-2986747.html