matlab《数字图像处理》第8章 傅立叶变换.ppt
《matlab《数字图像处理》第8章 傅立叶变换.ppt》由会员分享,可在线阅读,更多相关《matlab《数字图像处理》第8章 傅立叶变换.ppt(77页珍藏版)》请在三一办公上搜索。
1、第8章 图像傅立叶 变换,2,学习重点,二维傅立叶变换的定义 二维傅立叶变换的性质二维傅立叶变换matlab实现,3,学习内容,8.1 一维傅立叶变换8.2 二维傅立叶变换 8.3 傅立叶变换的性质 8.4 matlab傅立叶变换的实现8.5 傅立叶变换的应用简介,4,为什么要在频率域研究图像增强,可以利用频率成分和图像外表之间的对应关系。一些在空间域表达困难的增强任务,在频率域中变得非常普通。滤波在频率域更为直观,它可以解释空间域滤波的某些性质给出一个问题,寻找某个滤波器解决该问题,频率域处理对于试验、迅速而全面地控制滤波器参数是一个理想工具,5,为什么要在频率域研究图像增强,可以在频域指定
2、滤波器,做反变换,然后在空间域使用结果滤波器作为空间域滤波器的指导一旦通过频域试验选择了空间滤波,通常实施都在空间域进行一旦找到一个特殊应用的滤波器,通常在空间域采用硬件实现它,6,法国数学家傅立叶(生于1768年)在1822年出版的热分析理论一书中指出:任何周期函数都可以表达为不同频率的正弦和或余弦和的形式,即傅立叶级数。20世纪50年代后期,快速傅立叶变换算法出现,得到了广泛的应用。,8.1 一维傅立叶变换,7,8,1)一维连续函数的傅立叶变换(FT),定义:若函数满足狄里赫利(Dirichlet)条件:1)具有有限个间断点;2)具有有限个极值点;3)绝对可积,则下列变换成立:,傅立叶正变
3、换:,傅立叶反变换:,8.1 一维傅立叶变换,9,如果,为实函数,傅立叶变换用复数表示:,用指数形式表示:,傅立叶谱:,相角:,能量谱:,10,离散函数f(x)(其中x,u=0,1,2,M-1)的傅 立叶变换:,F(u)的反变换:,计算F(u):1)在指数项中代入u=0,然后将所有x 值相加2)u=1,复对所有x 的相加;3)对所有M 个u 重复此过程,得到完整的FT。,2)一维离散傅立叶变换(DFT),11,离散傅里叶变换及其反变换总存在。用欧拉公式得,每个F(u)由f(x)与对应频率的正弦和余弦乘积和组成;,u 值决定了变换的频率成份,因此,F(u)覆盖的域(u值)称为频率域,其中每一项都
4、被称为FT 的频率分量。与f(x)的“时间域”和“时间成份”相对应。,12,傅里叶变换将信号分成不同频率成份。类似光学中的分色棱镜把白光按波长(频率)分成不同颜色,称数学棱镜。傅里叶变换的成份:直流分量和交流分量,13,傅立叶变换在极坐标下表示:,频率谱,相位谱,功率谱,14,f(x)是一门函数,如图所示,它表示为:,求其傅立叶变换F(u),15,解:,16,对应的傅立叶谱为:,17,简单函数的傅里叶谱M 点离散函数及其傅里叶频谱(M=1024,A=1,K=8);对应的傅里叶频谱,曲线下面积:当x 域加倍时,频率谱的高度也加倍;当函数长度加倍时,相同间隔下频谱中零点的数量也加倍。,18,8.2
5、 二维傅立叶变换,1)二维连续函数傅立叶变换(2DFT),定义:若f(x,y)是连续图像函数,反变换:,正变换:,变换对:,19,幅度谱、相位谱、能量谱,一般F(u,v)是复函数,即:,幅度谱:,相位谱:,能量谱:,20,定义:若f(x,y)是离散图像函数,为MN维大小(通常M=N),则其傅立叶变换为:,正变换:,反变换:,2)二维离散傅立叶变换,21,1)可分离性:正反变换都具有分离性,8.3 二维傅立叶变换的性质,22,1)可分离性:正反变换都具有分离性,利用二维傅立叶变换的可分离性,可将二维DFT转化 成一维DFT计算。即,先在x(或y)方向进行一维DFT,再在y(或x)方向进行一维DF
6、T,23,2)平移性,公式(1):,24,2)平移性:,公式(2):,25,2)平移性:,26,3)分配律:,27,3)尺度变换(缩放):,28,5)旋转性,则:,此式含义是:当原图像旋转某一角度时,FT后的图像也旋转同一角度。,29,旋转性举例:,原图像及其傅立叶幅度谱图像,原图像旋转45,其幅度谱图像也旋转45,30,6)周期性和共轭对称性,31,6)周期性和共轭对称性,32,7)平均值,33,7)平均值,34,8)卷积定理,则:,35,9)相关定理,则:,36,卷积和相关理论总结:,卷积是空间域滤波和频率域滤波之间的纽带。,37,相关性匹配举例,延拓图像f(x,y),相关函数图像,离散傅
7、立叶变换应用中的问题1)频谱的图像显示 谱图像就是把|F(u,v)|作为亮度显示在屏幕上。由于在傅立叶变换中F(u,v)随u,v衰减太快,直接显示高频项只能看到一两个峰,其余都不清楚。为了符合图像处理中常用图像来显示结果的惯例,通常用D(u,v)来代替,以弥补只显示|F(u,v)|不够清楚这一缺陷。D(u,v)定义为:,39,下图给出了一维傅立叶变换原频谱|F(u)|图形和D(u)图形的差别。原|F(u)|图形只有中间几个峰可见,图(b)为处理后D(u)的图形。,2)频谱的频域移中 常用的傅里叶正反变换公式都是以零点为中心的公式,其结果中心最亮点却在图像的左上角,作为周期性函数其中心最亮点将分
8、布在四角,这和我们正常的习惯不同,因此,需要把这个图像的零点移到显示的中心。例如把F(u,v)的原零点从左上角移到显示屏的中心。,41,当周期为N时,应在频域移动N2。利用傅立叶的频域移动的性质:当u0=v0=N/2时 在作傅立叶变换时,先把原图像f(x,y)乘以(-1)x+y,然后再进行傅立叶变换,其结果谱就是移N2的F(u,v)。其频谱图为|F(u,v)|。,42,移中性:变换后主要能量(低频分量)集中在频率平面的中心。,未移中的变换:,移中的变换:,能量集中于中心,原图像f(x,y),能量分布于四角,43,8.4 matlab傅立叶变换的实现,在matlab中,一维快速傅立叶变换函数ff
9、t调用格式如下:Y=fft(X):返回向量X的离散傅立叶变换Y=fft(X,n):返回n点的傅立叶变换Y=fft(X,dim):表示在维数dim上应用fft算法Y=fft(X,n,dim),44,快速傅里叶变换(FFT)并不是一种新的变换,它是离散傅里叶变换(DFT)的一种算法。这种方法是在分析离散傅里叶变换(DFT)中的多余运算的基础上,进而消除这些重复工作的思想指导下得到的,所以在运算中大大节省了工作量,达到了快速的目的。,45,N维傅立叶变换:Y=fftn(X)返回X的多维离散傅立叶变换,结果Y和X的大小一致。把傅立叶变换的零频率部分移到频谱的中间,使用fftshif函数,调用格式如下:
10、Y=fftshift(X)把fft函数、fft2函数和fftn函数输出的结果的零频率部分移到数组的中间。对于向量,把X的左右部分交换,对于矩阵,把X的第一、三象限和二、四象限交换,46,8.5 傅立叶变换的应用简介,1)图像的傅立叶分析,%已知一幅30*30大小的二值图像,在图像中间有个长为5高为20的白色区域,其它区域为黑色%对这幅图进行傅立叶变换分析(主要用用FFT算法)clcclear allf=zeros(30,30);f(5:24,13:17)=1;%定义图像数组figure()imshow(f,InitialMagnification,fit);,47,F=fft2(f);%二维傅
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字图像处理 matlab数字图像处理第8章 傅立叶变换 matlab 数字图像 处理 傅立叶 变换
链接地址:https://www.31ppt.com/p-2973726.html