弹性力学第六章有限单元法.ppt
《弹性力学第六章有限单元法.ppt》由会员分享,可在线阅读,更多相关《弹性力学第六章有限单元法.ppt(138页珍藏版)》请在三一办公上搜索。
1、徐汉忠第一版2000/7,弹性力学第六章有限元,1,Chapter 6 Finite Element Method for Plane Stress and Plane Strain Problems,第六章 有限单元法解平面问题,徐汉忠第一版2000/7,弹性力学第六章有限元,2,References 参考书,徐芝纶,弹性力学简明教程第六章。高等教育出版社。华东水利学院,弹性力学问题的有限单元法,水利电力出版社。卓家寿,弹性力学中的有限元法,高等教育出版社。O.C.Zienkiewicz,The Finite Element Method,Third Edition,51.818,Z66K.
2、C.Rockey and so on,The Finite Element Method,Second Edition,51.818,R682-2,徐汉忠第一版2000/7,弹性力学第六章有限元,3,Introduction-1 导引-1,The finite element method is an extension of the analysis techniques(matrix method)of ordinary framed structures.有限元法是刚架结构分析技术的扩充。The finite element method was pioneered in the air
3、craft industry where there was an urgent need for accurate analysis of complex airframes.有限元法首先应用于飞机工业。,徐汉忠第一版2000/7,弹性力学第六章有限元,4,Introduction-2,The availability of automatic digital computers from 1950 onwards contributed to the rapid development of matrix methods during this period.从 1950以后 数字计算机的
4、出现使矩阵位移法迅速发展。,徐汉忠第一版2000/7,弹性力学第六章有限元,5,Introduction-3,The finite element method was developed rapidly from 1960 onwards and known in China from 1970 onwards.从 1960以后 有限元法迅速发展。1970以后 传入我国。,徐汉忠第一版2000/7,弹性力学第六章有限元,6,Introduction-4,In a continuum structure,a corresponding natural subdivision does not
5、exist so that the continuum has to be artificially divided into a number of elements before the matrix method of analysis can be applied.连续结构不存在自然的单元,须人为划分为单元,徐汉忠第一版2000/7,弹性力学第六章有限元,7,Introduction-5,The artificial elements,which are termed finite elements or discrete elements,are usually chosen to
6、be either rectangular or triangular in shape.单元通常取为三角形或矩形。,徐汉忠第一版2000/7,弹性力学第六章有限元,8,6.1 Fundamental quantities and fundamental equations expressed by matrix6.1 基本量和基本方程的矩程表示,Body force 体力:p=X YT Surface force 面力:p=X YTDisplacement 位移:f=u vTStrain 应变:=x y rxy T Stress 应力:=x y xy TGeometrical equatio
7、ns Physical equationsvirtual work equations,徐汉忠第一版2000/7,弹性力学第六章有限元,9,Geometrical Equation 几何方程,x u/x/x 0 u=y=v/y=0/y v=Lf rxy u/y+v/x/y/x x/x 0=y L=0/y f=u vT rxy/y/x=Lf,徐汉忠第一版2000/7,弹性力学第六章有限元,10,Physical Equation for Plane Stress Problem 平面应力问题的物理方程,x x+y 1 0 x y=E/(1-2)y+x=E/(1-2)1 0 y xy rxy(1-
8、)/2 0 0(1-)/2 rxy x 1 0 x=y D=E/(1-2)1 0=y xy 0 0(1-)/2 rxy=D,徐汉忠第一版2000/7,弹性力学第六章有限元,11,Virtual Work Equation 虚功方程,状态1:p=X YT p=X YT=x y xy T状态2:f*=u*v*T*=L f*虚功方程:f*Tpdx dy t+f*Tpds t=*Tdx dy t注:f*Tp=u*v*X=X u*+Y v*Y*T=x*y*rxy*x=x x*+y y*+xy rxy*y xy,徐汉忠第一版2000/7,弹性力学第六章有限元,12,6.2 Basic Concepts a
9、bout Finite Element Method6.2 有限单元法的概念,有限单元法的计算模型1.The continuum structure is idealized as a structure consisting of a number of individual elements connected only at nodal points.连续的结构理想化为仅由在结点相连的单元组成。,徐汉忠第一版2000/7,弹性力学第六章有限元,13,2.Displacement boundary:place a bar support at the node where displace
10、ment is zero.位移边界:结点位移为零处,设置连杆.3.The system of external loads acting on the actual structure has to be replaced by an equivalent system of forces concentrated at the element nodes.This can be done by using the principle of virtual work and equating the work done by the actual loads to the work done
11、by the equivalent nodal loads.外力按静力等效的原则移置到结点上,徐汉忠第一版2000/7,弹性力学第六章有限元,14,徐汉忠第一版2000/7,弹性力学第六章有限元,15,徐汉忠第一版2000/7,弹性力学第六章有限元,16,补充:关于离散 About Discretization,In reality Elements are connected together along their common boundaries.Here it is assumed that these elements are only interconnected at thei
12、r nodes.实际:单元间相连-假定:只结点相连,徐汉忠第一版2000/7,弹性力学第六章有限元,17,关于离散-2,However,in the finite element method,the individual elements are constrained to deform in specific patterns.然而,单元变形按指定模式.,徐汉忠第一版2000/7,弹性力学第六章有限元,18,关于离散-3,Hence,although continuity is only specified at the nodal points,the choice of a suit
13、able pattern of deflection for the elements can lead to the satisfaction of some,if not all,of the continuity requirements along the sides of adjacent elements.位移模式使相连单元位移连续得某些满足,徐汉忠第一版2000/7,弹性力学第六章有限元,19,关于离散-4,Hence,as stated by Clough,finite elements are not merely pieces cut from the original s
14、tructure,but are special types of elastic elements constrained to deform in specific patterns such that the overall continuity of the assemblage tends to be maintained,徐汉忠第一版2000/7,弹性力学第六章有限元,20,6.3 Displacement pattern and convergence criteria6.3 位移模式和收敛性,Fig.1 shows the typical triangular element
15、with nodes ijm numbered in an anti-clockwise order.Y m图1为一典型的三角形单元,i 结点 ijm 逆钟向编号-x正向到 jy正向。Fig.1 x,Element with nodes numbered 单元的结点编号,徐汉忠第一版2000/7,弹性力学第六章有限元,21,Displacement pattern 位移模式,The displacement representation is given by the two linear polynomials with six constants 位移用有6个常数的线性多项式表示 u=1+
16、2x+3y(1)v=4+5x+6y(2),徐汉忠第一版2000/7,弹性力学第六章有限元,22,Since these displacements are both linear in x and y,displacement continuity is ensured along the interface between adjoining elements for any identical nodal displacement.因为位移在单元上均为线性,相邻单元交界面上的位移连续性因同一结点位移相同而得到保证。,Displacement continuity 位移连续性,徐汉忠第一版2
17、000/7,弹性力学第六章有限元,23,u=1+2x+3y(1)Substitution of the nodal coordinates into equation(1)yields:结点坐标代入方程(1)得:ui=1+2 xi+3 yi uj=1+2 xj+3 yj(3)um=1+2 xm+3 ym ui=u(xi,yi)uj=u(xj,yj)um=u(xm,ym),To obtain 1 2 3 求 1 2 3-1,徐汉忠第一版2000/7,弹性力学第六章有限元,24,u=1+2x+3y(1)Substitution of the nodal coordinates into equat
18、ion(1)yields:结点坐标代入方程(1)得:ui 1 xi yi 1 uj=1 xj yj 2(3)um 1 xm ym 3 ui=u(xi,yi)uj=u(xj,yj)um=u(xm,ym),To obtain 1 2 3 求 1 2 3-1,徐汉忠第一版2000/7,弹性力学第六章有限元,25,Solving eq.(3),we obtain:解方程(3)得 1 ui xi yi 1 ui yi 1 xi ui T 2=1/2A uj xj yj 1 uj yj 1 xj u j 3 um xm ym 1 um ym 1 xm um 1 xi yi 1 xj yj=2A(4)1 x
19、m ym The above expression is ensured when the node ijm are in an anti-clockwise order.(A-area of triangle ijm 单元面积)当结点逆钟向编号 x正向到 y正向 时,上式成立,To obtain 1 2 3 求 1 2 3-2,徐汉忠第一版2000/7,弹性力学第六章有限元,26,Substitution of 1 2 3 into eq.(1)yields:将 1 2 3代入方程(1)得:,ui xi yi 1 ui yi 1 xi ui u=1/2A uj xj yj+1 uj yj x
20、+1 xj u j y um xm ym 1 um ym 1 xm um 1 x y 1 x y 1 x y=1/2A 1 xj yj ui+1 xm ym uj+1 xi y i um 1 xm ym 1 xi yi 1 xj yj u=Ni(x,y)ui+Nj(x,y)uj+Nm(x,y)um v=Ni(x,y)vi+Nj(x,y)vj+Nm(x,y)vm,徐汉忠第一版2000/7,弹性力学第六章有限元,27,In which:1 x y 1 xi yi 其中:Ni(x,y)=1 xj yj 1 xj yj 1 xm ym 1 xm ym=(ai+bix+ciy)/(2A)(i,j,m)x
21、j yj 1 yj ai=xm ym=xjym-xmyj bi=-1 ym=yj-ym 1 xj ci=1 xm=xm-xj(i,j,m)1 xi yi 2A=1 xj yj 1 xm ym,徐汉忠第一版2000/7,弹性力学第六章有限元,28,Ni is called element displacement function or element shape function.Ni 叫做单元位移函数或单元形函数。Ni(xi,yi)=1 Ni(xj,yj)=0 Ni(xm,ym)=0(i,j,m)1 x y 1 xi yi Ni(x,y)=1 xj yj 1 xj yj 1 xm ym 1
22、xm ym,徐汉忠第一版2000/7,弹性力学第六章有限元,29,u=Ni(x,y)ui+Nj(x,y)uj+Nm(x,y)um v=Ni(x,y)vi+Nj(x,y)vj+Nm(x,y)vmf=N e f=u vT nodal displacement matrix:结点位移列阵:e=ui vi uj vj um vmTshape function matrix:形函数矩阵:Ni 0 Nj 0 Nm 0 N=0 Ni 0 Nj 0 Nm 有限个自由度问题,徐汉忠第一版2000/7,弹性力学第六章有限元,30,Convergence Criteria 收敛准则-1,Criterion 1:Th
23、e displacement function chosen should be such that it does not permit straining of an element to occur when the nodal displacements are caused by a rigid body displacement.准则1:位移模式必须反映单元的刚体位移。,徐汉忠第一版2000/7,弹性力学第六章有限元,31,Convergence Criteria 收敛准则-2,Criterion 2:The displacement function has to be take
24、n so that the constant strain(constant first derivative)could be observed.准则2:位移模式必须反映单元的常量应变。,徐汉忠第一版2000/7,弹性力学第六章有限元,32,Convergence Criteria 收敛准则-3,Criterion 3:The displacement function should be so chosen that the strains at the interface between elements are finite(even though indeterminate and
25、not equal).准则3:位移模式必须使单元公共边上的应变在不同单元中为常量。,徐汉忠第一版2000/7,弹性力学第六章有限元,33,Convergence Criteria 收敛准则-3,准则3:位移模式必须使位移处处连续.(1)单元内位移连续.(2)单元公共边上的位移连续。,徐汉忠第一版2000/7,弹性力学第六章有限元,34,Further discussion about criteria-1 准则的进一步讨论-1,Criterion 3 implies a certain continuity of displacements between elements-In the ca
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 弹性 力学 第六 有限 单元

链接地址:https://www.31ppt.com/p-2971814.html