汽车差速器与主减速器设计毕业论文.doc
《汽车差速器与主减速器设计毕业论文.doc》由会员分享,可在线阅读,更多相关《汽车差速器与主减速器设计毕业论文.doc(51页珍藏版)》请在三一办公上搜索。
1、摘要本文介绍了轿车差速器与主减速器的设计建模过程,论述了轿车差速器与主减速器的结构和工作原理,通过对轿车主要参数的分析与计算对差速器和主减速器进行设计,并使用Pro/E对差速器与主减速器进行3D建模,生成2D工程图。完成装配后,对主减速器、差速器进行运动仿真,以论证差速器的差速器原理。关键词:建模,差速器,主减速器,分析AbstractThis paper discusses the automobile differential design and modeling process of the final drive, and the structure and the principl
2、e of automobile differential and the final drive.the car After the analysis and calculation of final drive and differential,to use Pro/E to complete make 3D model of the final drive and differential, then to produce 2D drawings.There is going to analysis the final drive to prove the principle after
3、finishing the composing.Keywords: Modeling, Differential,Final drive,Analysis目录摘要IAbstractII目录III1绪论11.1课题来源11.2课题研究现状11.2.1国内外汽车行业CAD研究与应用情况11.3主减速器的研究现状11.4 差速器的研究现状21.5 课题研究的主要内容32QY7180概念轿车主减速器与差速器总体设计42.1QY7180概念轿车主要参数与主减速器、差速器结构选型42.1.1QY7180概念轿车的主要参数42.1.2QY7180概念轿车主减速器与差速器结构选型42.2主减速器与差速器的结构
4、与工作原理52.3QY7180概念轿车主减速器主减速比i0的确定63主减速器和差速器主要参数选择与计算73.1主减速器齿轮计算载荷的确定73.1.1按发动机最大转矩和最低档传动比确定从动齿轮的计算转矩Tce73.1.2按驱动车轮打滑转矩确定从动齿轮的计算转矩Tcs73.1.3按日常平均使用转矩来确定从动齿轮的计算转矩83.2主减速器齿轮传动设计83.2.1按齿面接触强度设计83.2.2按齿根弯曲强度设计103.2.3按变速器一挡齿轮设计123.3差速器行星齿轮与半轴齿轮主要参数选择和计算154主减速器与差速器的三维实体建模184.1主减速器三维建模分析与设计思路184.2斜齿轮的建模过程184
5、.3锥齿轮的建模过程264.4差速器壳体、主减速器壳体的创建364.4.1差速器壳体的创建364.4.2主减速器壳体的创建375主减速器与差速器的装配与运动仿真395.1主减速器装配思路395.2主减速器装配过程395.3主减速器运动仿真415.3.1运动仿真思路415.3.2建立运动仿真过程425.3.3运动仿真分析42总结与展望45致谢46参考文献471绪论1.1课题来源课题QY7180概念轿车主减速器、差速器设计本课题是数字化样车设计的一部分,主要使用Pro/E软件完成QY7180概念轿车变速器主减速器、差速器的三维模型建立、校核分析和工程图设计。1.2课题研究现状1.2.1国内外汽车行
6、业CAD研究与应用情况美国的汽车公司在上世纪80年代初就开始CAD系统的规划与实施,到了80年代中期有大半以上的产品设计工作采用CAD来进行设计制造,并取消了中间过程,使计算机与制造终端直接相连,最终实现了系统网络化,至90年代初其产品开发全面采用CAD。德国、日本等发达国家的一些大型汽车企业,在上世纪90年代就已基本上全面采用CAD。我国从20世纪70年代开始研究和推广CAD,到目前为止,国内大型制造型企业如汽车企业已普遍实施了CAD系统,一些大型汽车企业的CAD应用水平也接近国际先进水平。1.3主减速器的研究现状减速器是机械装备制造业应用较为广泛的传动与调速设备,在现代科研、国防、交通、冶
7、金、化工以及基础设施建设等众多领域应用十分广泛。汽车主减速器是驱动桥最重要的组成部分,其功用是将万向传动装置传来的发动机转矩传递给驱动车轮,是汽车传动系中减小转速、增大扭矩的主要部件。目前车用减速器发展趋势和特点是向着六高、二低、二化方向发展,即高承载能力、高齿面硬度、高精度、高速度、高可靠性、高传动效率,低噪声、低成本,标准化、多样化。自改革开放以来,中国的汽车工业得到了长足发展与进步,车用主减速器也随着整车的发展不断成长和成熟起来。随着轿车的技术不断发展,发动机前置前轮驱动已成为普及型轿车的首选,发动机前置前轮驱动的轿车,结构紧凑、造价成本较低,但是造成发动机舱零件总成增加、车辆重心前移,
8、对车辆的加速性能与制动性能都有较大影响,对发动机前置前轮驱动的轿车而言,减小发动机与动力总成的质量与尺寸成为一个主要的优化设计方向。设计开发上,CAD、CAE、CAM等计算机应用技术,以及UG、CATIA、PRO/E等设计软件先后应用于主减速器的结构设计和齿轮加工中,有限元分析、数模建立、虚拟试验分析等也被采用;齿轮设计也初步实现了计算机编程的电算化,使得主减速器的优化设计变得简单与方便。从发动机的大马力、低转速的发展趋势以及车辆的最高车速的提升来看,车桥减速器应该向小速比方向发展:在最大输出扭矩相同时齿轮的使用寿命要求更高(齿轮疲劳寿命平均可达50万次以上);在额定轴荷相同时,车桥的超载能力
9、更强;主减速器齿轮使用寿命更长、噪音更低、强度更大,润滑密封性能更好;整体刚性好,速比范围宽。1.4 差速器的研究现状近年来中国汽车差速器市场发展迅速,产品产出持续扩张,国家产业政策鼓励汽车差速器产业向高技术产品方向发展,国内企业新增投资项目投资逐渐增多。投资者对汽车差速器行业的关注越来越密切,这使得汽车差速器行业的发展需求增大。从目前来看,我国差速器行业已经顺利完成了由小到大的转变,正处于由大到强的发展阶段。由小到大是一个量变的过程,科学发展观对它的影响或许仅限于速度和时间,但由大到强却是一个质变的过程,能否顺利完成这一蜕变,科学发展观起着至关重要的作用。然而,在这个转型和调整的关键时刻,提
10、高汽车车辆、石油化工、电力通讯差速器的精度、可靠性是中国差速器行业的紧迫任务。1.5 课题研究的主要内容课题主要内容(1)QY7180概念轿车的基本情况(2)QY7180概念轿车主减速器、差速器设计结构特点及设计方法(3)QY7180概念轿车主减速器、差速器设计三维建模及二维工程图(4)QY7180概念轿车主减速器、差速器设计运动分析(5)了解Pro/E的参数化设计方法本次课题主要通过对QY7180概念轿车主要动力参数得分析计算,得出其主减速器与差速器的主要参数,并通过Pro/E软件实现主减速器与差速器的三维实体建模,并对其进行运动仿真。2QY7180概念轿车主减速器与差速器总体设计2.1QY
11、7180概念轿车主要参数与主减速器、差速器结构选型2.1.1QY7180概念轿车的主要参数QY7180概念轿车的主要参数见表2.1。表2.1 QY7180轿车主要参数主要参数数值总质量1490最高车速(km/h)161最大功率(kwrpm )70/5200最大扭距(Nmrpm)145/3000前轴轴荷(满载/空载)800/645后轴轴荷(满载/空载)770/425变速器一挡传动比3.455变速器二挡传动比1.944变速器三挡传动比1.286变速器四挡传动比0.969变速器五挡传动比0.8002.1.2QY7180概念轿车主减速器与差速器结构选型QY7180轿车是一款发动机前置前轮驱动的轿车,整
12、车重量较小,发动机输出功率不大,因此该车的整套动力系统均是横向布置、采用质量较小、结构较为简单的部件。因为经大概估算的主减速比不大,主减速器采用结构简单、体积及质量小且制造成本较低的单级主减速器,且主减速器为横向布置,不需要该变动力的传动方向,因此主减速器齿轮采用传动较为平稳、噪音较低、承载能力较强的圆柱斜齿轮,如图2.1。对于行驶在公路上的汽车来说,由于路面较好,各驱动轮与路面的附着系数几乎没有差别,且附着较好,因此采用结构简单、工作平稳、制造方便、用于公路汽车也很可靠的普通对称式圆锥行星齿轮差速器,如图2.2。2.2主减速器与差速器的工作原理主减速器是由主减速器主动齿轮、主减速器从动齿轮、
13、轴承与外壳组成;差速器是由行星齿轮、半轴齿轮与差速器壳体组成。与差速器结构如图2.1与图2.2所示。图2.1 主减速器结构图图2.2 差速器结构主减速器是在传动系中起降低转速,增大转矩作用的主要部件,当发动机纵置时还具有改变转矩旋转方向的作用。它是依靠齿数少的齿轮带齿数多的齿轮来实现减速的,采用圆锥齿轮传动则可以改变转矩旋转方向。将主减速器布置在动力向驱动轮分流之前的位置,有利于减小其前面的传动部件(如离合器、变速器、传动轴等)所传递的转矩,从而减小这些部件的尺寸和质量。差速器是汽车驱动桥的主要构成部件,其作用就是在向两个半轴传递动力的同时,可以调节两边半轴的转速旋转,使其有转速差以使两边车轮
14、尽可能以纯滚动的形式作不等半径行驶,减少轮胎与地面的摩擦。发动机的动力经变速器再从传动轴进入主减速器后,直接驱动差速器壳,差速器壳再将动力传递到行星齿轮,由行星齿轮带动左、右半轴齿轮,进而驱动车轮,左、右半轴的转速之和等于差速器壳转速的两倍。当汽车直线行驶时,行星齿轮、左、右半轴齿轮和驱动车轮三者转速相同。当汽车转弯行驶时,由于汽车驱动车轮受力情况发生变化,反馈在左右半轴上,进而破坏差速器原有的平衡,这时转速重新分配,导致内侧车轮转速减小,外侧车轮转速增加,重新达到平衡状态,同时,汽车完成转弯动作。2.3QY7180概念轿车主减速器主减速比i0的确定主减速比的大小,对主减速器的结构形式、轮廓尺
15、寸及质量的大小影响很大。主减速器比的选择,应在汽车总体设计时和传动系的总传动比一起,由汽车的整车动力计算来确定。对于具有很大功率储备的轿车、客车、长途公共汽车,尤其是对竞赛汽车来说,在给定发动机最大功率Pemax的情况下,所选择的值应能保证这些汽车有尽可能高的最高车速vamax1。这时i0值由下式来计算:rr:车轮滚动半径 rr=0.2862mnp:发动机最大功率时转速 np=5200r/minvamax:最高车速 vamax=161km/high:变速器最高档传动比 igh=ig5=0.8003主减速器和差速器主要参数选择与计算3.1主减速器齿轮计算载荷的确定由于汽车行驶时传动系载荷的不稳定
16、性,因此要准确地计算出主减速器齿轮的计算载荷是比较困难的。通常是将发动机最大转矩配以传动系最低档传动比时和驱动车轮在良好路面上开始滑转时这两种情况下作用在主减速器从动齿轮上的转矩(Tce、Tcs)的较小者,作为汽车在强度计算中用以验算主减速器从动齿轮最大应力的计算载荷1。3.1.1按发动机最大转矩和最低档传动比确定从动齿轮的计算转矩TceKd:猛接离合器时所产生的动载系数 Kd=1Temax:发动机最大转矩 Temax=145Nm i0:主减速比 i0=4.3562i1:变速器一档传动比 i1=3.455n:驱动桥数 n=1:传动系传动效率 =0.93.1.2按驱动车轮打滑转矩确定从动齿轮的计
17、算转矩TcsG1:满载状态下驱动桥上的动载荷 G1=7840Nm1:汽车加速时前轴载荷转移系数 m1=0.81 :轮胎与路面间的附着系数 =0.85rr:轮胎滚动半径 rr=0.2862:主减速器从动齿轮到车轮之间的传动效率 =0.993.1.3按日常平均使用转矩来确定从动齿轮的计算转矩Ga:汽车满载总重量 Ga=14602Ni:主减速器从动齿轮到车轮之间的传动比 i=1rr:轮胎滚动半径 rr=0.2862:主减速器从动齿轮到车轮之间的传动效率 =0.99n:驱动桥数 n=1fr:道路滚动阻力系数 fr=0.015fh:平均爬坡能力系数 fh=0.08fp:汽车性能系数 fp=03.2主减速
18、器齿轮传动设计设计思路主要通过机械设计教材提供的方法进行齿面接触强度设计、齿根弯曲强度设计以及按主减速器一挡齿轮进行设计,然后对比各种方法的优劣 ,进行选择。3.2.1按齿面接触强度设计齿轮精度为6级6小齿轮齿数z1=14大齿轮齿数z2=z14.3562=60.9861初选螺旋角为=14试选载荷系数Kt=1.6转矩T1=Tjm=464.8106Nm小齿轮转速n1=6500.0603r/min宽度系数d=0.6弹性影响系数Ze=189.8MPa齿轮的接触疲劳强度极限Hlim1=Hlim2=1200MPa计算应力循环次数(按寿命10年每年300天每天3小时)取接触疲劳寿命系数KHN1=0.91 K
19、HN2=0.94取失效概率为1%,安全系数S=1选取区域系数Zh=2.433端面重合度计算:1=0.69 2=0.86 =1+2=1.55许用接触应力试算小齿轮分度圆直径d1t,由计算公式得6带入参数得d1t=69.8185mm计算圆周速度计算齿宽b及模数mnt计算纵向重合度计算载荷系数K使用系数K=1.5 动载系数Kv=1.15 齿间载荷分配系数Kh=Kf=1.1 齿向载荷分配系数Kh=1.388 齿向载荷分布系数Kf=1.26按实际的载荷系数校正所算得的分度圆直径计算模数mn3.2.2按齿根弯曲强度设计计算载荷系数根据纵向重合度查得螺旋角影响系数Y=0.92取弯曲疲劳寿命系数为KFN1=0
20、.89 KFN2=0.92,安全系数为1.4查得小齿轮的弯曲疲劳强度极限FE1=810MPa查得大齿轮的弯曲疲劳强度极限FE2=810MPa计算弯曲疲劳许用应力查取齿形系数YF1=3.1 YF2=2.28查取应力校正系数YS1=1.48 YS2=1.73计算大小齿轮的并加以比较小齿轮的数值较大设计计算对比计算结果,由齿面解除疲劳强度计算的法面模数与由齿根弯曲疲劳强度计算的法面模数相差不大,取标准值Mn=6,取分度圆直径d1=82.4368mm取z1=11,则z2=z14.3562=47.9148,取z2=48计算中心距将中心距圆整为183mm按圆整后的中心距修正螺旋角因值改变不大,故参数、K、
21、Zh等不必修改计算大、小齿轮的分度圆直径计算齿轮宽度圆整后取B2=41mm B1=46mm以上设计计算方法采用的是机械设计教程中所用到的设计校核方法,但是计算所得到的齿轮尺寸较大,不适合于发动机横置前驱的轿车,由于没有找到有关发动机横置前驱轿车主减速器设计的有关资料,这里将采用轿车变速器中齿轮设计的有关方法,为了更接近于主减速器齿轮,则采用变速器一挡齿轮设计作为参照。3.2.3按变速器一挡齿轮设计模数选择在齿轮中心距相同的条件下,选取较小的模数,就可以增加齿轮齿数,增加齿宽使的齿轮啮合的重合度增加,可以减小噪音,所以从减小噪音方面来看应该合理减小模数、增加齿宽;从减小质量方面来看,应该增加模数
22、、减小齿宽。对于轿车来讲,减小噪音比较重要 ,所以应该选择小些的模数。乘用车发动机排量在1.0与1.6之间,通常模数在2.25与2.75之间;发动机排量在1.6与2.5之间,通常模数在2.75与3.0之间。所选模数数值应该符合国家标准GB/T13571987的规定,见表3.1。选用时,应该优先选用第一系列,括号内的尽可能不选。表3.1 汽车变速器常用的齿轮模数(摘自GB/T13571987)(mm)第一系列第二系列1.001.751.252.251.502.752.00(3.25)2.503.503.00(3.75)4.004.505.005.50压力角选择齿轮压力角较小时,重合度较大并降低了
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 汽车差速器与主减速器设计 毕业论文 汽车 差速器 减速器 设计
链接地址:https://www.31ppt.com/p-2961954.html