504650657毕业设计(论文)汽车驱动桥结构设计.doc
《504650657毕业设计(论文)汽车驱动桥结构设计.doc》由会员分享,可在线阅读,更多相关《504650657毕业设计(论文)汽车驱动桥结构设计.doc(47页珍藏版)》请在三一办公上搜索。
1、目 录1 绪论.11.1主减速器分析.2 1.1.1 单级主减速器.3 1.1.2双级主减速器.3 1.1.3双速主减速器.4 1.1.4贯通式主减速器.41.2差速器结构形式选择.4 1.3结构形式分析.61.4驱动桥壳结构方案分析.71.4.1可分式桥壳.71.4.2整体式桥壳.71.4.3组合式桥壳.71.5汽车的主要参数.82 主减速器设计.92.1主减速器结构分析.92.1.1螺旋锥齿轮传动.92.1.2双曲面齿轮传动.92.1.3圆柱齿轮传动.112.1.4蜗杆传动.112.2主减速器主、从动锥齿轮的支承方案.122.2.1主动锥齿轮的支承.122.2.2从动锥齿轮的支承.132.
2、3主减速器锥齿轮主要参数选择.142.3.1主减速比i0 的确定.142.3.2主、从动锥齿轮齿数z1和z2.142.3.3从动锥齿轮大端分度圆直径D2和端面模数m.152.3.4主、从动锥齿轮齿面宽b1和b2.152.3.5中点螺旋角.162.3.6螺旋方向.162.3.7法向压力角.172.4主减速器锥齿轮强度计算.172.4.1计算载荷的确定.172.4.2主减速器锥齿轮的强度计算.182.5主减速器锥齿轮和轴承的载荷计算.212.5.1齿轮轴齿面载荷与强度校核.212.5.2 锥齿轮轴承的载荷.252.6锥齿轮材料.283 差速器设计.303.1普通锥齿轮差速器齿轮设计.303.1差速
3、器齿轮主要参数选择.303.2差速器直齿锥齿轮的强度计算.324车轮传动装置设计.354.1半轴计算.35 4.1.1全浮式半轴.354.2 半轴的结构设计.365驱动桥壳设计.376发电机的选择.406.1 发动机最大功率和相应转速.406.2 发动机最大转矩及相应转速.40结 论.42 参考文献.43目 录1 绪论.11.1主减速器分析.2 1.1.1 单级主减速器.3 1.1.2双级主减速器.3 1.1.3双速主减速器.4 1.1.4贯通式主减速器.41.2差速器结构形式选择.4 1.3结构形式分析.61.4驱动桥壳结构方案分析.71.4.1可分式桥壳.71.4.2整体式桥壳.71.4.
4、3组合式桥壳.71.5汽车的主要参数.82 主减速器设计.92.1主减速器结构分析.92.1.1螺旋锥齿轮传动.92.1.2双曲面齿轮传动.92.1.3圆柱齿轮传动.112.1.4蜗杆传动.112.2主减速器主、从动锥齿轮的支承方案.122.2.1主动锥齿轮的支承.122.2.2从动锥齿轮的支承.132.3主减速器锥齿轮主要参数选择.142.3.1主减速比i0 的确定.142.3.2主、从动锥齿轮齿数z1和z2.142.3.3从动锥齿轮大端分度圆直径D2和端面模数m.152.3.4主、从动锥齿轮齿面宽b1和b2.152.3.5中点螺旋角.162.3.6螺旋方向.162.3.7法向压力角.172
5、.4主减速器锥齿轮强度计算.172.4.1计算载荷的确定.172.4.2主减速器锥齿轮的强度计算.182.5主减速器锥齿轮和轴承的载荷计算.212.5.1齿轮轴齿面载荷与强度校核.212.5.2 锥齿轮轴承的载荷.252.6锥齿轮材料.283 差速器设计.303.1普通锥齿轮差速器齿轮设计.303.1差速器齿轮主要参数选择.303.2差速器直齿锥齿轮的强度计算.324车轮传动装置设计.354.1半轴计算.35 4.1.1全浮式半轴.354.2 半轴的结构设计.365驱动桥壳设计.376发电机的选择.406.1 发动机最大功率和相应转速.406.2 发动机最大转矩及相应转速.40结 论.42 参
6、考文献.431 绪论驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力力和横向力。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。驱动桥的结构形式与驱动车轮的悬架形式密切相关。当车轮采用非独立悬架时,驱动桥应为非断开式(或称为整体式),即驱动桥壳是一跟连接左右驱动车轮的刚性空心梁(图1.1),而主减速器、差速器及车轮传动装置(由左、右半轴组成)都装在它里面。当采用独立悬架时,为保证运动协调,驱动桥应为断开式,这种驱动桥无刚性的整体外壳,主减速器及其壳体装在车架或车身上,两侧驱动车轮则
7、与车架或车身作弹性联系,并可彼此独立地分别相对与车架或车身作上下摆动,车轮传动装置采用万向节传动(图1.2)。为了防止运动干涉,应采用滑动花键轴或一种允许两轴能有适量轴向移动的万向移动的万向传动机构。1-后桥壳;2-差速器壳;3-差速器行星齿轮;4-差速器半轴齿轮;5-半轴; 6-主减速器从动齿轮齿圈;7-主减速器主动小齿轮图1.1后轮驱动驱动桥的主要部件输入驱动桥的动力首先传到主减速器主动小齿轮7,经主减速器减速后转矩增大,再经差速器分配给左右两半轴5,最后传至驱动车轮。具有桥壳的非断开式驱动桥结构简单、制造工艺性好、成本低、工作可靠、维修调整容易,广泛应用于各种载货汽车、客车及多数的越野汽
8、车和部分小轿车上。但整个驱动桥均属于簧下质量,对汽车平顺性和降低动载荷不利。断开式驱动桥结构较复杂,成本较高,但它大大地增加了离地间隙;减小了簧下质量,从而改善了行使平顺性,提高了汽车的平均车速;减小了汽车在行使时作用于车轮和车桥上的动载荷,提高了零部件的使用寿命;由于驱动车轮与地面的接触情况及对各种地形的适应性较好,大大增加了车轮的抗侧滑能力;与之相配合的独立悬架导向机构设计得合理,可增加汽车的不足转向效应,提高汽车的操纵稳定性。这种驱动桥在轿车和高通过性的越野汽车上应用相当,比较可知,本设计采用非断开式驱动桥比较合适。 为了与独立悬架相适应,驱动桥壳需要分为用铰链连接的几段,更多的是只保留
9、主减速器壳(或带有部分半轴套管)部分,主减速器壳固定在车架或车身上,这种驱动桥称为断开式驱动桥。为了适应驱动轮独立上下跳动的需要,差速器与车轮之间的半轴也要分段,各段之间用万向节连接。1-主减速器;2-半轴;3-弹性元件;4-减振器;5-车轮;6-摆臂;7-摆臂轴图1.2 断开式驱动桥的构造1.1 主减速器分析主减速器的结构形式主要是根据齿轮类型、减速器形式不同而不同。主减速器的齿轮主要有旋锥齿轮、双曲面齿轮、圆柱齿轮和蜗轮蜗杆等形式。主减速器的减速形式可分为单级减速、双级减速、双速减速、单双级贯通、单双级减速配以轮边减速等。1.1.1 单级主减速器单级主减速器(图1.3)可由一对圆锥齿轮、一
10、对圆柱齿轮或由蜗轮蜗杆组成,具有结构简单、质量小、成本低、使用简单等优点。但是其主传动比扎不能太大,一般7,进一步提高将增大从动齿轮直径,从而减小离地间隙,且使从动齿轮热处理困难。单级主减速器广泛应用于轿车和轻、中型货车的驱动桥中。双面齿轮单级主减速器用于贯通桥时应使 图 1.3单级主减速器1.1.2 双级主减速器双级主减速器与单级相比,在保证离地间隙相同时可得到大的传动比,一般为712。但是尺寸、质量均较大,成本较高。它主要应用于中、重型货车、越野车和大客车上。在具有锥齿轮和圆柱齿轮的双级主减速器中分配传动比时,圆柱齿轮副和锥齿轮副传动比的比值一般为1420,而且锥齿轮副传动比一般为1733
11、,这样可减小锥齿轮啮合时的轴向载荷和作用在从动锥齿轮及圆柱齿轮上的载荷,同时可使主动锥齿轮的齿数适当增多,使其支承轴颈的尺寸适当加大,以改善其支承刚度,提高啮合平稳性和工作可靠性。1.1.3 双速主减速器双速主减速器内由齿轮的不同组合可获得两种传动比。它与普通变速器相配合,可得到双倍于变速器的挡位。双速主减速器的高低挡减速比是根据汽车的使用条件、发动机功率及变速器各挡速比的大小来选定的。大的主减速比用于汽车满载行驶或在困难道路上行驶,以克服较大的行驶阻力并减少变速器中间挡位的变换次数;小的主减速比则用于汽车空载、半载行驶或在良好路面上行驶,以改善汽车的燃料经济性和提高平均车速。1.1.4 贯通
12、式主减速器贯通式主减速器根据其减速形式可分成单级和双级两种。单级贯通式主减速器具有结构简单,体积小,质量小,并可使中、后桥的大部分零件,尤其是使桥壳、半轴等主要零件具有互换性等优点,主要用于轻型多桥驱动的汽车上。根据减速齿轮形式不同,单级贯通式主减速器又可分为双曲面齿轮式及蜗轮蜗杆式两种结构。对于中、重型多桥驱动的汽车,由于主减速比较大,多采用双级贯通式主减速器。根据齿轮的组合方式不同,可分为锥齿轮一圆柱齿轮式和圆柱齿轮一锥齿轮式两种形式。1.2 差速器结构形式选择 汽车上广泛采用的差速器为对称锥齿轮式差速器,具有结构简单、质量较小等优点,应用广泛。他又可分为普通锥齿轮式差速器、摩擦片式差速器
13、和强制锁止式差速器等1 普通锥齿轮式差速器由于普通锥齿轮式差速器结构简单、工作平稳可靠,所以广泛应用于一般使用条件的汽车驱动桥中。 图1.4 差速器(图1.4)为其示意图,图中0为差速器壳的角速度;1、2分别为左、右两半轴的角速度;To为差速器壳接受的转矩; 普通锥齿轮差速器的锁紧系数是一般为005015,两半轴转矩比kb=111135,这说明左、右半轴的转矩差别不大,故可以认为分配给两半轴的转矩大致相等,这样的分配比例对于在良好路面上行驶的汽车来说是合适的。但当汽车越野行驶或在泥泞、冰雪路面上行驶,一侧驱动车轮与地面的附着系数很小时,尽管另一侧车轮与地面有良好的附着,其驱动转矩也不得不随附着
14、系数小的一侧同样地减小,无法发挥潜在牵引力,以致汽车停驶。2 摩擦片式差速器为了增加差速器的内摩擦力矩,在半轴齿轮7与差速器壳1之间装上了摩擦片2。两根行星齿轮轴5互相垂直,轴的两端制成V形面4与差速器壳孔上的V形面相配,两个行星齿轮轴5的V形面是反向安装的。每个半轴齿轮背面有压盘3和主、从动摩擦片2,主、从动摩擦片2分别经花键与差速器壳1和压盘3相连。图1.5摩擦片式差速器当传递转矩时,差速器壳通过斜面对行星齿轮轴产生沿行星齿轮轴线方向的轴向力,该轴向力推动行星齿轮使压盘将摩擦片压紧。当左、右半轴转速不等时,主、从动摩擦片间产生相对滑转,从而产生摩擦力矩。这种差速器结构简单,工作平稳,可明显
15、提高汽车通过性。3 强制锁止式差速器当一个驱动轮处于附着系数较小的路面时,可通过液压或气动操纵,啮合接合器(即差速锁)将差速器壳与半轴锁紧在一起,使差速器不起作用,这样可充分利用地面的附着系数采用差速锁将普通锥齿轮差速器锁住,可使汽车的牵引力提高,从而提高了汽车通过性。当然,如果左、右车轮都处于低附着系数的路面,虽锁住差速器,但牵引力仍超过车轮与地面间的附着力,汽车也无法行驶。强制锁止式差速器可充分利用原差速器结构,其结构简单,操作方便。目前,许多使用范围比较广的重型货车上都装用差速锁。1.3 结构形式分析半轴根据其车轮端的支承方式不同,可分为牛浮式、浮式和全浮式三种形式。图1.6半浮式半轴半
16、浮式半轴(图1.6a)的结构特点是半轴外端支承轴承位于半轴套管外端的内孔,车轮装在半轴上。半浮式半轴除传递转矩外,其外端还承受由路面对车轮的反力所引起的全部力和力矩。半浮式半轴结构简单,所受载荷较大,只用于轿车和轻型货车及轻型客车上。 浮式半轴(图1.6b)的结构特点是半轴外端仅有一个轴承并装在驱动桥壳半轴套管的端部,直接支承着车轮轮毂,而半轴则以其端部凸缘与轮毂用螺钉联接。该形式半轴受载情况与半浮式相似,只是载荷有所减轻,一般仅用在轿车和轻型货车上。全浮式半轴(图1.6c)的结构特点是半轴外端的凸缘用螺钉与轮毂相联,而轮毂又借用两个圆锥滚子轴承支承在驱动桥壳的半轴套管上。理论上来说,半轴只承
17、受转矩,作用于驱动轮上的其它反力和弯矩全由桥壳来承受。但由于桥壳变形、轮毂与差速器半轴齿轮不同女、半轴法兰平面相对其轴线不垂直等因素,会引起半轴的弯曲变形,由此引起的弯曲应力一般为570MPa。全浮式半轴主要用于中、重型货车上。1.4 驱动桥壳结构方案分析驱动桥壳大致可分为可分式、整体式和组合式三种形式。1.4.1可分式桥壳可分式桥壳由一个垂直接合面分为左右两部分,两部分通过螺栓联接成一体。每一部分均由一铸造壳体和一个压入其外端的半轴套管组成,轴管与壳体用铆钉连接。这种桥壳结构简单,制造工艺性好,主减速器支承刚度好。但拆装、调整、维修很不方便,桥壳的强度和刚度受结构的限制,曾用于轻型汽车上,现
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 504650657 毕业设计 论文 汽车 驱动 结构设计
链接地址:https://www.31ppt.com/p-2957337.html