第3章叉车工作装置液压系统设计0926.doc
《第3章叉车工作装置液压系统设计0926.doc》由会员分享,可在线阅读,更多相关《第3章叉车工作装置液压系统设计0926.doc(24页珍藏版)》请在三一办公上搜索。
1、第3章 叉车工作装置液压系统设计 叉车作为一种流动式装卸搬运机械,由于具有很好的机动性和通过性,以及很强的适应性,因此适合于货种多、货量大且必须迅速集散和周转的部门使用,成为港口码头、铁路车站和仓库货场等部门不可缺少的工具。本章以叉车工作装置液压系统设计为例,介绍叉车工作装置液压系统的设计方法及步骤,包括叉车工作装置液压系统主要参数的确定、原理图的拟定、液压元件的选择以及液压系统性能验算等。3.1概述 叉车也叫叉式装卸机、叉式装卸车或铲车,属于通用的起重运输机械,主要用于车站、仓库、港口和工厂等工作场所,进行成件包装货物的装卸和搬运。叉车的使用不仅可实现装卸搬运作业的机械化,减轻劳动强度,节约
2、大量劳力,提高劳动生产力,而且能够缩短装卸、搬运、堆码的作业时间,加速汽车和铁路车辆的周转,提高仓库容积的利用率,减少货物破损,提高作业的安全程度。3.1.1叉车的结构及基本技术按照动力装置不同,叉车可分为内燃叉车和电瓶叉车两大类;根据叉车的用途不同,分为普通叉车和特种叉车两种;根据叉车的构造特点不同,叉车又分为直叉平衡重式叉车、插腿式叉车、前移式叉车、侧面式叉车等几种。其中直叉平衡重式叉车是最常用的一种叉车。叉车通常由自行的轮式底盘和一套能垂直升降以及前后倾斜的工作装置组成。某型号叉车的结构组成及外形图如图3-1所示,其中货叉、叉架、门架、起升液压缸及倾斜液压缸组成叉车的工作装置。1-货叉
3、2-叉架 3-门架及起升液压缸 4-倾斜液压缸 5-方向盘 6-操纵杆 7-底盘及车轮图3-1 叉车的结构及外形叉车的基本技术参数有起重量、载荷中心矩、起升高度、满载行驶速度、满载最大起升速度、满载爬坡度、门架的前倾角和后倾角以及最小转弯半径等。其中,起重量(Q)又称额定起重量,是指货叉上的货物中心位于规定的载荷中心距时,叉车能够举升的最大重量。我国标准中规定的起重量系列为:0.50,0.75,1.25,1.50,1.75,2.00,2.25,2.50,2.75,3.00,3.50,4.00,4.50,5.00,6.00,7.00,8.00,10.00.吨。载荷中心距e,是指货物重心到货叉垂直
4、段前表面的距离。标准中所给出的规定值与起重量有关,起重量大时,载荷中心距也大。例如平衡重式叉车的载荷中心距如表3-1所示。表3-1 平衡重式叉车的载荷中心距额定起重量Q/tQ11Q55 Q 1012 Q 1820 Q 12载荷中心距e/mm1005006009001250 起升高度hmax,指叉车位于水平坚实地面上,门架垂直放置且承受额定起重量的货物时,货叉所能升起的最大高度,即货叉升至最大高度时水平段上表面至地面的垂直距离。现有的起升高度系列为:1500,2000,2500,2700,3000,3300,3600,4000,4500,5000,5500,6000,7000mm。满载行驶速度v
5、max,指货叉上货物达到额定起重量且变速器在最高档位时,叉车在平直干硬的道路上行驶所能达到的最高稳定行驶速度。满载最大起升速度vamax,指叉车在停止状态下,将发动机油门开到最大时,起升大小为额定起重量的货物所能达到的平均起升速度。满载爬坡度a,指货叉上载有额定起重量的货物时,叉车以最低稳定速度行驶所能爬上的长度为规定值的最陡坡道的坡度值。其值以半分数计。门架的前倾角f及后倾角b,分别指无载的叉车门架能从其垂直位向前和向后倾斜摆动的最大角度。最小转弯半径Rmin,指将叉车的转向轮转至极限位置并以最低稳定速度作转弯运动时,其瞬时中心距车体最外侧的距离。在叉车的基本技术参数中,起重量和载荷中心距能
6、体现出叉车的装载能力,即叉车能装卸和搬运的最重货件。最大起升高度体现的是叉车利用空间高度的情况,可估算仓库空间的利用程度和堆垛高度。速度参数则体现了叉车作业循环所需要的时间,与起重量参数一起可估算出生产率。3.1.2叉车的工作装置叉车的工作装置是叉车进行装卸作业的直接工作机构。货物的叉取卸放、升降堆码,都靠工作装置来完成。工作装置是保证叉车能够完成工作任务的最重要组成部分之一。叉车工作装置主要由货叉、叉架、门架、链条和滑轮、起升液压缸和倾斜液压缸组成,如图3-2所示。其中起升液压缸驱动叉架升降,倾斜液压缸驱动门架前后倾斜,以满足工作需要。为了做到一机多用,提高机器效能,除货叉外,叉车还可配备多
7、种工作属具。1-货叉 2-叉架 3-门架 4-链条和滑轮 5-起升液压缸 6-倾斜液压缸图3-2 叉车工作装置 叉车工作装置上的货叉是直接承载货物的叉形构件,叉架是一个框架形状的结构,链条的一端与叉架相连,链条在绕过起升液压缸头部的滑轮后,另一端固定在缸筒或外门架上。起升液压缸通过滑轮和链条,使叉架沿着内门架升降,内门架又以外门架为导轨上下伸缩。为了满足码垛作业对起升高度的要求,同时为了减小叉车自身的高度外形尺寸,门架通常为伸缩式结构,由内外两节组成。外门架的下部铰接在车架或前桥上,借助于倾斜液压缸的作用,门架可以在前后方向倾斜一定角度。前倾的目的是为了装卸货物方便,后倾的目的是当叉车行驶时,
8、使货叉上的货物保持稳定。3.1.3叉车的液压系统叉车液压系统是叉车的重要组成部分,其工作装置、助力转向系统甚至行走传动系统等都需要由液压系统驱动完成。因此,叉车液压系统的质量优劣直接影响着叉车的性能。某型号叉车工作装置的液压系统原理图如图3-3所示,该液压系统有起升液压缸4、倾斜液压缸9和属具液压缸10三个执行元件,由定量泵6供油,多路换向阀(属具滑阀1、起升液压缸滑阀7、倾斜液压缸滑阀8)控制各执行元件的动作,单向节流阀3调节起升和属具动作速度,从而驱动工作装置完成相应的工作任务。1-属具滑阀 2-分配阀 3-单向节流阀 4-起升液压缸 5-安全阀 6-液压泵 7-起升液压缸滑阀 8-倾斜液
9、压缸滑阀 9-倾斜液压缸 10-属具液压缸图3-3 工作装置液压系统 由于叉车原动机(内燃机和电动机)的转速高,扭矩小,而叉车的行驶速度较低,驱动轮的扭矩较大,因此在原动机和驱动轮之间必须有起减速增矩作用的传动装置,当叉车在不同载荷和不同作业条件下工作时,传动装置必须要保证叉车具有良好的牵引性能。对于内燃叉车,由于内燃机不能反转,叉车要想倒退行驶,必须依靠传动装置来实现。叉车的传动装置有机械式、液力式、液压式和电动机械式几种。机械式传动只能具有有限数目的传动比,因此只能实现有级变速。液力传动效率较机械式低,液压传动能够使传动系大大简化,取消机械式和液力式传动中的传动轴和差速器。某型号叉车行走驱
10、动液压系统的原理图如图3-4所示,该液压系统由变量主液压泵1供油,执行元件为液压马达7,主液压泵的吸油和供油路与液压马达的排油和进油路相连,形成闭式回路。双向安全阀5保证液压回路双向工作的安全,梭阀6和换油溢流阀8使低压的热油排回油箱,辅助液压泵2把油箱中经过冷却的液压油补充到系统中,起到补充系统泄漏和换油的作用,溢流阀4限定补油压力,单向阀3保证补油到低压油路中。1- 主泵 2-辅助液压泵 3-补换油溢流阀 4-单向阀 5-双向安全阀 6-梭阀 7-液压马达 8-换油溢流图3-4 行走驱动液压系统 叉车作业时转向频繁,转弯半径小,有时需要原地转向。叉车空载时,转向桥负荷约占车重的60%。为了
11、减轻驾驶员的劳动强度,现在起重量2吨以上的叉车多采用助力转向液压助力转向或全液压转向。液压助力转向操作轻便,动作迅速,有利于提高叉车的作业效率,油液还可以缓冲地面对转向系的冲击。 某叉车液压助力转向系统原理图如图3-5所示,该转向液压系统和叉车工作装置液压系统属各自独立的液压系统,分别由单独的液压泵供油。系统中流量调节阀2可保证转向助力器稳定供油,并使系统流量限制在发动机怠速运转时液压泵流量的1.5倍。随动阀3与普通的三位四通换向阀基本相同,只不过该阀的阀体与转向液压缸缸筒连接为一体,随液压缸缸筒的动作而动作。叉车直线行驶时,方向盘处于中间位置,随动阀3的阀芯也处于中间位置,转向液压缸4不动作
12、,叉车直线行驶。当叉车转弯时,驾驶员转动方向盘,联动机构带动随动阀4的阀芯动作,使转向液压缸的两腔分别与液压泵或油箱连通,液压缸动作,驱动转向轮旋转,叉车转向,直到液压缸缸筒的移动距离与阀芯的移动距离相同时,阀芯复位,转向停止。1-液压泵 2-调速阀 3-随动阀 4-转向液压缸 5-滤油器6-单向阀 7-安全阀 8-油箱图3-5 叉车助力转向液压系统叉车液压系统的设计要能够保证叉车正常安全地完成工作任务,对液压系统的工作要求包括:1超载保护,多路换向阀壳体无裂纹、渗漏;工作性能应良好可靠;安全阀动作灵敏,在超载25%时应能全开,调整螺栓的螺帽应齐全坚固。操作手柄定位准确、可靠,不得因震动而变位
13、。叉车在装卸运输作业时不允许货物的重量大于叉车本身的重量。在叉车试验项目中,有一项是允许叉车以110%的起重量载荷进行联合操作,即一边起升载荷一边向前运行,以检验叉车各部件的协调性和动作的可能性,此时发动机的功率、转速应达到额定的参数,液压系统应能够承压、无渗油。对超载起升保护的性能检验是以125%的起重量载荷进行起升动作。此时,液压系统中应设置相应的超载保护装置,例如多路换向阀中安全阀。超载时,虽然多路换向阀阀杆动作,但货叉和125%起重量载荷不得离开地面或离开地面不超过300mm,即叉车应呈现出起升速度下降或起升动作失灵。2最大下降速度控制,为了提高装卸效率,如果叉车起升速度增大,满载下降
14、速度也增大,下降速度过大是危险的,因此叉车液压系统中应设置下降限速阀,既要控制货叉的下降速度不超过限定的速度值,又要防止起升液压缸的高压橡胶软管突然爆破时,起升在一定高度的载荷不会和货叉一起突然落下,损伤货物或伤人。3液压系统管路接头牢靠、无渗漏,与其它机件不磨碰,橡胶软管不得有老化、变质现象。4液压系统中的传动部件在额定载荷、额定速度范围内不应出现爬行、停滞和明显的冲动现象。5其它为节省叉车携带电动机,减少叉车附属设备,从而减小液压系统的整体尺寸,叉车工作装置液压系统可以由叉车发动机直接驱动液压泵来提供油源。为适应叉车有可能工作在具有粉尘和沙粒的厂房环境中,因此应考虑为液压系统设置合适的过滤
15、器,液压油的工作温度应限定在合适的范围内,叉车的工作环境温度一般为-1045C。3.1.5本设计要求及技术参数1起升装置液压系统技术参数本设计实例所设计的叉车主要用于工厂中作业,要求能够提升5000kg的重物,最大垂直提升高度为2m,叉车杆和导轨的重量约为200kg,在任意载荷下,叉车杆最大上升(下降)速度不超过0.2m/s,要求叉车杆上升(下降)速度可调,以实现叉车杆的缓慢移动,并且具有良好的位置控制功能。要求对叉车杆具有锁紧功能,无论在多大载荷作用下,或者甚至在液压油源无法供油,油源到液压缸之间的液压管路出现故障等情况下,要求叉车杆能够被锁紧在最后设定的位置。叉车杆在上升过程中,当液压系统
16、出现故障时,要求安全保护装置能够使负载安全下降。本设计实例所设计叉车工作装置中叉车杆起升装置示意图如图3-6所示,由起升液压缸驱动货叉沿支架上下运动,从而提升和放下货物。图 3-6 起升装置2倾斜装置液压系统技术参数叉车工作装置中的叉车杆倾斜装置示意图如图3-7所示,该装置由倾斜液压缸驱动货叉及门架围绕门架上某一支点做摆动式旋转运动,从而使货叉能够在转运货物过程中向后倾斜某一角度,以防止货物在转运过程中从货叉上滑落。倾斜装置的最大倾斜角为距垂直位置20,最大扭矩为18000Nm,倾斜角速度应限制在12/s之间。图 3-7 倾斜装置设计过程中,除了要满足叉车工作装置液压系统的技术参数要求外,还应
17、注意叉车的工作条件对液压系统的结构、尺寸及工作可靠性等其他要求。综上所述,本设计实例叉车工作装置液压系统的设计要求及技术参数如表3-2所示。表3-2 技术参数技术参数起升工作装置额定载荷质量m(kg)5000最大提升负载质量m(kg)5200提升高度h(m)2最大提升速度v(m/s)0.2倾斜工作装置最大倾斜扭矩T(Nm)18000倾斜角度()20最大倾斜角速度(/s)12力臂r(m)1 本设计实例中已给出所设计起升液压系统和倾斜液压系统的最大负载和最大速度,因此可直接确定液压系统的主要参数,无须再对液压系统进行工况分析,因此该步骤可以省略。3.3液压系统的主要参数确定 本设计实例叉车工作装置
18、液压系统包括起升液压系统和倾斜液压系统两个子系统,分别由起升液压缸和倾斜液压缸驱动,因此首先确定两个子系统执行元件的设计参数和系统的工作压力。3.3.1 起升液压系统的参数确定起升液压系统的作用是提起和放下货物,因此执行元件应选择液压缸。由于起升液压缸仅在起升工作阶段承受负载,在下落过程中液压缸可在负载和液压缸活塞自重作用下自动缩回,因此可采用单作用液压缸。如果把单作用液压缸的环形腔与活塞的另一侧连通,构成差动连接方式,则能够在提高起升速度的情况下减小液压泵的输出流量。如果忽略管路的损失,单作用液压缸的无杆腔和有杆腔的压力近似相等,则液压缸的驱动力将由活塞杆的截面积决定。实现单作用液压缸的差动
19、连接,可以通过方向控制阀在外部管路上实现,如图3-8(a)。为减小外部连接管路,液压缸的设计也可采用在活塞上开孔的方式,如图3-8(b)所示。这种测试方法有杆腔所需要的流量就可以从无杆腔一侧获得,液压缸只需要在无杆腔外部连接一条油路,而有杆腔一侧不需要单独连接到回路中。 (a)管路连接方式 (b)活塞上开孔方式图3-8 差动连接液压缸起升液压缸在驱动货叉和叉架起升时,活塞杆处于受压状态,起支撑杆的作用,所以在设计起升液压缸时,必须考虑活塞杆的长径比,为保证受压状态下的稳定工作,应考虑活塞杆的长径比不超过20:1。如果采用液压缸直接驱动货叉实现起升和下落的设计方案,则为满足起升高度要求,根据表3
20、-2中设计要求,液压缸活塞杆长度应为2m。根据上述长径比设计规则,活塞杆直径至少为0.1m。当起升液压缸使用的活塞杆直径为100mm时,根据差动液压缸输出力计算方法,此时液压缸提升负载的有效面积为活塞杆面积(在计算液压缸受力的时候,活塞上的孔可以忽略。),即m2根据表3-2中设计要求,起升液压缸需承受的负载力为:N因此,如果忽略压力损失和摩擦力,液压系统所需提供的工作压力应为:00000 Pa = 6.5 MPa这个压力值比较低,为充分利用液压系统的传动优势,应考虑能够采用更高液压系统工作压力的设计方案。但提高压力后,液压缸活塞杆直径会相应变小,如果按活塞杆长径比的设计规则,此时活塞杆长度有可
21、能不足以把负载提升到2m的高度,所以必须考虑其他设计方案。本设计实例通过增加一个传动链条和动滑轮机构对起升装置前述设计方案进行改进,即如图3-6所示实施方案。根据传动原理,采用这一液压缸与链条和动滑轮结合的机构可以使液压缸行程减小一半,但是需要对输出力和活塞杆截面积进行校核。由于传动链条固定在叉车门架的一端,液压缸活塞杆的行程可以减半,因此活塞杆的直径也可以相应地减半,但同时也要求液压缸输出的作用力为原来的两倍。即液压缸行程为1m,活塞杆直径变为50mm。于是,该起升液压缸的有效作用面积变为:m2按照前面的计算,由于液压缸所需输出的功保持不变,但是液压缸移动的位移减半,所以液压缸输出的作用力变
22、为原来的两倍,即N液压系统所需的工作压力变为:MPa取起升液压缸的工作压力为13MPa,该工作压力对于液压系统来说属于合适的工作压力,因此起升液压缸可以采用这一设计参数。起升液压缸所需的最大流量由起升装置的最大速度决定。在由动滑轮和链条组成的系统中,起升液压缸的最大运动速度是叉车杆最大运动速度(0.2m/s)的一半,于是m3/s= 47.1L/min此时,起升液压缸活塞杆移动1m,叉车货叉和门架移动2m,能够满足设计需求。查液压工程手册或参考书,取倾斜液压缸活塞杆直径d和活塞直径(液压缸内径)D之间的关系为 ,计算得到起升液压缸的活塞直径为=65mm根据液压缸参数标准,取液压缸活塞直径为80m
23、m,液压缸的行程为1m。图3-7倾斜装置示意图表明,由货物重量引起的倾斜装置负载扭矩总是倾向于使货叉和支架回复到垂直位置。3.3.2倾斜液压系统的参数确定叉车的货叉倾斜工作装置主要用于驱动货叉和门架围绕门架上的支点在某一个小角度范围内摆动,因此倾斜液压系统也采用液压缸作执行元件即可。倾斜液压缸与货叉门架的连接方式主要有三种,如图3-9所示。图3-9 倾斜液压缸与门架的三种连接方式 图3-9叉车倾斜液压缸与门架的三种连接方式表明,叉车倾斜液压缸应输出的作用力不仅取决于叉车货门架及负载产生的倾斜力矩,而且也取决于液压缸和门架的连接位置到叉车货叉门架倾斜支点的距离,因此叉车倾斜液压缸的尺寸也取决于倾
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 叉车 工作 装置 液压 系统 设计 0926
链接地址:https://www.31ppt.com/p-2956918.html