外啮合齿轮泵设计说明书.doc
《外啮合齿轮泵设计说明书.doc》由会员分享,可在线阅读,更多相关《外啮合齿轮泵设计说明书.doc(26页珍藏版)》请在三一办公上搜索。
1、武汉科技大学本科毕业设计(论文) 题 目: 中高压外啮合齿轮泵设计 姓 名: 专 业: 交通运输 学 号: 200934011 指导教师: 武汉科技大学机械工程学院二0一三年五月 目 录摘 要IAbstractII1绪 论11.1 研发背景及意义11.2齿轮泵的工作原理21.3 齿轮泵的结构特点31.4外啮合齿轮泵基本设计思路及关键技术32 外啮合齿轮泵设计52.1 齿轮的设计计算52.2 轴的设计与校核72.2.1齿轮泵的径向力72.2.2减小径向力和提高齿轮轴轴颈及轴承负载能力的措施82.2.3 轴的设计与校核82.3 卸荷槽尺寸设计计算112.3.1 困油现象的产生及危害112.3.2
2、消除困油危害的方法132.3.3 卸荷槽尺寸计算152.4 进、出油口尺寸设计172.5 选轴承172.6 键的选择与校核172.7 连接螺栓的选择与校核182.8 泵体壁厚的选择与校核18总 结19致 谢20参 考 文 献22摘 要(想要此课题的CAD装配图与零件图与本人联系 qq:994166684,保证你的毕业设计过关)外啮合齿轮泵是一种常用的液压泵,它靠一对齿轮的进入和脱离啮合完成吸油和压油,且均存在泄漏现象、困油现象以及噪声和振动。减小外啮合齿轮泵的径向力是研究外啮合齿轮泵的一大课题,为减小径向力中高压外啮合齿轮泵多采用的是变位齿轮,并且对轴和轴承的要求较高。为解决泄漏问题,低压外啮
3、合齿轮泵可采用提高加工精度等方法解决,而对于中高压外啮合齿轮泵则需要采取加浮动轴套或弹性侧板的方法解决。困油现象引起齿轮泵强烈的振动和噪声还大大所短外啮合齿轮泵的使用寿命,解决困油问题的方法是开卸荷槽。关键词:外啮合齿轮泵,变位齿轮,浮动轴套,困油现象,卸荷槽AbstractThe external gear pump is a commonly used hydraulic pumps, which rely on a pair of meshing gears into and out of oil and oil pressure to complete, and there are l
4、eakage, the phenomenon of trapped oil and noise and vibration. Reduce the external gear pump of the radial force is the external gear pump is a major issue, in order to reduce the radial force more pressure external gear pump uses a variable gear and the shaft and bearings are higher. To solve the l
5、eakage problem, low pressure gear pump and other methods can be used to solve higher precision, while for the high-pressure external gear pumps are needed to increase the floating sleeve or elastic side panels of the solutions. Phenomenon caused by trapped oil gear pump is also a strong vibration an
6、d noise are considerably shorter service life of external gear pump to solve the oil problem is trapped unloading opening slot. Key words:external gear pump, variable gear, floating shaft, trapping phenomenon, unloading tank 1绪 论1.1 研发背景及意义齿轮泵是在工业应用中运用极其广泛的重要装置之一,尤其是在液压传动与控制技术中占有很大的比重,它具有结构简单、体积小、重量
7、轻、自吸性能好、耐污染、使用可靠、寿命较长、制造容易、维修方便、价格便宜等特点L一”。但同时齿轮泵也还存在一些不足,如困油现象比较严重、流量和压力脉动较大、径向力不平衡、泄漏大、噪声高及易产生气穴等缺点,这些特性和缺点都直接影响着齿轮泵的质量。随着齿轮泵在高温、高压、大排量、低流量脉动、低噪音等方面发展及应用,对齿轮泵的特性研究及提高齿轮泵的安全和效率已成为国内外深入研究的课题。外啮合齿轮泵是应用最广泛的一种齿轮泵( 称为普通齿轮泵), 其设计及生产技术水平也最成熟。多采用三片式结构、浮动轴套轴向间隙自动补偿措施, 并采用平槽以减小齿轮( 轴承) 的径向不平衡力。目前,这种齿轮泵的额定压力可达
8、25 MPa。但是, 由于这种齿轮泵的齿数较少,导致其流量脉动较大由于齿轮泵在液压传动系统中应用广泛,因此,吸引了大量学者对其进行研究。目前,国内外学者关于齿轮泵的研究主要集中在以下方面:齿轮参数及泵体结构的优化设计;齿轮泵间隙优化及补偿技术;困油冲击及卸荷措施;齿轮泵流量品质研究;齿轮泵的噪声控制技术;轮齿表面涂覆技术;齿轮泵的变量方法研究;齿轮泵的寿命及其影响因素研究;齿轮泵液压力分析及其高压化的途径;水介质齿轮泵基础理论研究 。综上所知,对齿轮泵的自主研发和设计对我国尤为重要。特别是在提高其效力和降低噪音和振动方面。随着社会的发展,齿轮泵更广泛的被应用于各种工业,工业自动化程度越来越高,
9、需要达到的精度也越高,市场竞争越来越激烈。这就要求齿轮泵的设计制造在秉承了原有的先进技术之外,要不断攻克新的技术难点。此次研究在达到课题给出的条件要求之外力争改善外啮合齿轮泵的如下难点:(1)高压化;(2)低流量脉动;(3)低噪声;(4)大排量;(5)变排量,为社会工业发展提供性能更强、更稳定的外啮合齿轮泵。本论文针对如何降低外啮合齿轮泵的输出流量脉动和噪声并力求在保持外啮合齿轮泵的结构和工艺在各类液压泵中最简单,在价格、可靠性、寿命、抗污染和自吸能力强的优势上开展了对齿轮泵的工作机理分析与研究。本论文在对外啮合齿轮泵工作原理和流量脉动机理分析的基础上,为外啮合齿轮泵的结构设计奠定基础。 在此
10、基础上进行了外啮合齿轮泵的结构设计,通过建立外啮合齿轮泵齿轮的优化数学模型,优化计算出使输出流量脉动最小的齿轮参数。这对于促进机械装备的技术进步、降低机械装备的制造成本具有十分重要的意义,其应用前景将十分广阔.1.2齿轮泵的工作原理外啮合齿轮泵的工作原理图如图1.2所示: 图1-2齿轮泵工作原理图由图可见,这种泵的壳体内装有一对外啮合齿轮。由于齿轮端面与壳体 端盖之间的缝隙很小,齿轮齿顶与壳体内表面的间隙也很小,因此可以看成将齿轮泵壳体内分隔成 左、右两个密封容腔。当齿轮按图示方向旋转时,右侧的齿轮逐渐脱离啮合,露出齿间。因此这 一侧的密封容腔的体积逐渐增大,形成局部真空,油箱中的油液在大气压
11、力的作用下经泵的吸油 口进入这个腔体,因此这个容腔称为吸油腔。随着齿轮的转动,每个齿间中的油液从右侧被带到 了左侧。在左侧的密封容腔中,轮齿逐渐进入啮合,使左侧密封容腔的体积逐渐减小,把齿间的油 液从压油口挤压输出的容腔称为压油腔。当齿轮泵不断地旋转时,齿轮泵的吸、压油口不断地吸油 和压油,实现了向液压系统输送油液的过程。在齿轮泵中,吸油区和压油区由相互啮合的轮齿和泵体分隔开来,因此没有单独的配油机构。齿轮泵是容积式回转泵的一种,其工作原理是:齿轮泵具有一对互相啮合的齿轮,齿轮(主动轮)固定在主动轴上,齿轮泵的轴一端伸出壳外由原动机驱动,齿轮泵的另一个齿轮(从动轮)装在另一个轴上,齿轮泵的齿轮
12、旋转时,液体沿吸油管进入到吸入空间,沿上下壳壁被两个齿轮分别挤压到排出空间汇合(齿与齿啮合前),然后进入压油管排出。 齿轮泵的主要特点是结构紧凑、体积小、重量轻、造价低。但与其他类型泵比较,有效率低、振动大、噪音大和易磨损的缺点。齿轮泵适合于输送黏稠液体。1.3 齿轮泵的结构特点齿轮采用具有国际九十年人先进水平的新技术-双圆弧正弦曲线齿型圆弧。它与渐开线齿轮相比,最突出的优点是齿轮啮合过程中齿廓面没有相对滑动,所以齿面无磨损、运转平衡、无困液现象,噪声低、寿命长、效率高。该泵摆脱传统设计的束缚,使得齿轮泵在设计、生产和使用上进入了一个新的领域。 泵设有差压式安全阀作为超载保护,安全阀全回流压力
13、为泵额定排出压力1.5倍。也可在允许排出压力范围内根据实际需要另行调整。但是此安全阀不能作减压阀长期工作,需要时可在管路上另行安装。 该泵轴端密封设计为两种形式,一种是机械密封,另一种是填料密封,可根据具体使用情况和用户要求确定。 1.4外啮合齿轮泵基本设计思路及关键技术 外啮合泵主要由主、从动齿轮,驱动轴,泵体及侧板等主要零件构成。泵体内相互啮合的主、从动齿轮与两端盖及泵体一起构成密封工作容积,齿轮的啮合点将两腔隔开,形成了吸、压油腔,吸油腔内的轮齿脱离啮合,密封工作腔容积不断增大,形成部分真空,油液在大气压力作用下从油箱经吸油管进入吸油腔,并被旋转的轮齿带入压油腔。压油腔内的轮齿不断进入啮
14、合,使密封工作腔容积减小,油液受到挤压被排往系统,这就是齿轮泵的吸油和压油程。在齿轮泵的啮合过程中,啮合点沿啮合线,把吸油区和压油区分开。根据外啮合齿轮泵的工作原理及外啮合齿轮泵设计方面的资料,我们可总结出外啮合齿轮泵的基本设计思路如下:1.根据使用场合选择齿数。均匀性要求高的一般取14到,20齿。要求低的取6到14齿。2.根据需要的排量计算模数。m=q/KZ(B/m)开三次根号。m是模数Z是齿数q是排量。K=6.66,B是齿宽(B/m)根据压力查表低压较大,高压较小3.齿轮变位。齿轮泵齿轮匀许根切但要保证根切的情况下不漏油。所以一般要保证啮合线始终在根切部分以外。具体要查齿轮手册。根据以往经
15、验14齿以上可以不变位。变位会使排量变小,所以需要变位时得把齿数再减小然后变位来凑出需要的排量。齿轮是核心部件,至此主要工作结束。4. 轴的设计与校核。5.开泄荷槽。一般都是开那种矩形对称的。并根据液压元件上的公试计算其尺寸。6.计算吸油和排油口齿寸。7.选密封件、轴承、键等标准件。8.选择泵体壁厚画外壳。其中关键技术为齿轮的设计与轴向间隙补偿装置的设计。 2 外啮合齿轮泵设计 2.1 齿轮的设计计算(1)因为此外啮合齿轮泵是中高压齿轮泵所以材料强度要求较高,根据资料文献选择齿轮材料为40Cr。(2)确定参数 根据齿轮泵的排量公式由于齿间容积比轮齿间的体积稍大,考虑这一因素,将2用6,66代替
16、比较符合实际情况。因此 式中 B齿宽(mm) V公称排量(ml/r) z齿轮齿数 m模数(mm)根据额定压力P=10MPa齿数选择原则:目前齿轮泵的齿数一般为z=6-20.由于低压齿轮泵多应用在机床上,故要求流量均匀,因此低压齿轮泵的齿数多取为13-20。对于高压齿轮泵,要求有较大的齿根强度。为了减小轴承的受力,要减小齿顶圆直径,这样势必要增大模数、减少齿数,因此高压齿轮泵的齿数较少,一般取z=6-14。为了防止根切削弱齿根强度,齿形要求进行修正。 齿宽选择原则:齿轮泵的流量成正比,增加齿宽可以相应的增加流量而齿轮与泵体及盖板间的摩擦损失及容积损失的总和与齿宽并不成比例的增加,因此,齿宽较大时
17、液压泵的总效率较高,但对于高压齿轮泵,齿宽不宜过大,否则将使齿轮轴及轴承上的载荷过大使轴及轴承设计困难。一般对于高压齿轮泵B=(3-6)m,对于低压齿轮泵B=(6-10)m。泵的工作压力越高,上述系数应取得越小。根据以上原则选择齿数z=14,B/m=5.4,代入数据得取整得m=5mm,齿轮的其他参数:压力角变位系数 齿宽mm(3)校核:齿轮泵排量校核 误差小于5 %,合格。按齿根弯曲疲劳强度校核齿轮:因从动轮受力大所以只需校核从动轮。根据校核公式确定式中各参数:D=mz=5x14=70mm n(V601000)(D)1287rmin 查手册得: 将其代入得: 所以齿轮合格。2.2 轴的设计与校
18、核2.2.1齿轮泵的径向力齿轮泵工作时,作用在齿轮轴颈及轴承上的径向力,由液压力和齿轮啮合力组成。1.液压力 是指沿齿轮圆周液体压力所产生的径向力F。液压力的大小和方向取决于液体压力沿齿顶圆周的分布情况,吸油腔区段(其夹角为)受压力的作用,压油腔区段(其夹角为)受压力的作用,吸压油腔之间的过渡段(其夹角为)所受的压力是变化的(由升至)。为计算简便,可近似认为吸压油腔间的过渡段,承受沿齿轮圆周线性分布压力,如图2-1所示。 图2-1 齿轮圆周压力的近似分布曲线在实际设计时,齿轮所受的总液压力亦可按下列近似公式计算 液压力作用在主动齿轮上产生的径向力和作用在从动齿轮上产生的径向力,其大小与方向完全
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 啮合 齿轮泵 设计 说明书

链接地址:https://www.31ppt.com/p-2954958.html