压铸生产中常遇模具存在的问题注意点.doc
《压铸生产中常遇模具存在的问题注意点.doc》由会员分享,可在线阅读,更多相关《压铸生产中常遇模具存在的问题注意点.doc(33页珍藏版)》请在三一办公上搜索。
1、 压铸生产中常遇模具存在的问题注意点 发布时间:2012-6-5 10:10:42 来源:互联网文字【大 中 小】 1. 浇注系统、排溢系统例(1)对于冷室卧式压铸机上模具直浇道的要求: 压室内径尺寸应根据所需的比压与压室充满度来选定,同时,浇口套的内径偏差应比压室内径的偏差适当放大几丝,从而可避免因浇口套与压室内径不同轴而造成冲头卡死或磨损严重的问题,且浇口套的壁厚不能太薄。浇口套的长度一般应小于压射冲头的送出引程,以便涂料从压室中脱出。 压室与浇口套的内孔,在热处理后应精磨,再沿轴线方向进行研磨,其表面粗糙Ra0.2m。 分流器与形成涂料的凹腔,其凹入深度等于横浇道深度,其直径配浇口套内径
2、,沿脱模方向有5斜度。当采用涂导入式直浇道时,因缩短了压室有效长度的容积,可提高压室的充满度。2. 对于模具横浇道的要求 冷卧式模具横浇道的入口处一般应位于压室上部内径2/3以上部位,以免压室中金属液在重力作用下过早进入横浇道,提前开始凝固。 横浇道的截面积从直浇道起至内浇口应逐渐减小,为出现截面扩大,则金属液流经时会出现负压,易吸入分型面上的气体,增加金属液流动中的涡流裹气。一般出口处截面比进口处小10-30%。 横浇道应有一定的长度和深度。保持一定长度的目的是起稳流和导向的作用。若深度不够,则金属液降温快,深度过深,则因冷凝过慢,既影响生产率又增加回炉料用量。 横浇道的截面积应大于内浇口的
3、截面积,以保证金属液入型的速度。主横浇道的截面积应大于各分支横浇道的截面积。 横浇道的底部两侧应做成圆角,以免出现早期裂纹,二侧面可做出5左右的斜度。横浇道部位的表面粗糙度Ra0.4m。3. 内浇口 金属液入型后不应立即封闭分型面,溢流槽和排气槽不宜正面冲击型芯。金属液入型后的流向尽可能沿铸入的肋筋和散热片,由厚壁处向薄壁处填充等。 选择内浇口位置时,尽可能使金属液流程最短。采用多股内浇口时,要防止入型后几股金属液汇合、相互冲击,从而产生涡流包气和氧化夹杂等缺陷。 薄壁件的内浇口厚件要适当小些,以保证必要的填充速度,内浇口的设置应便于切除,且不使铸件本体有缺损(吃肉)。 (4)溢流槽 溢流槽要
4、便于从铸件上去除,并尽量不损伤铸件本体。 溢流槽上开设排气槽时,需注意溢流口的位置,避免过早阻塞排气槽,使排气槽不起作用。 不应在同一个溢流槽上开设几个溢流口或开设一个很宽很厚的溢流口,以免金属液中的冷液、渣、气、涂料等 料饼厚度大小对压铸的影响 发布时间:2012-5-3 10:19:35 来源:互联网文字【大 中 小】 料饼厚度超差,产品易形成欠铸、冷隔(汤回)、气孔、发黑、浇口分层缺肉、疏松、缩孔、产品机械性能下降等缺陷。 一、料饼厚度的大小规范 1、一般情况下料饼厚度为:50为165mm60为185mm70为205mm80为225mm90为245mm100为265mm。 2、当产品的气
5、孔要求比较严格时,料饼厚度应适当加厚25mm即:50为205mm60为225mm70为255mm 3、当模具的浇口套和分流锥不用通水冷却时,料饼厚度应适当减小23mm即:50为45mm60为165mm70为185mm等。 二、料饼的材料组成料饼是由料缸周围温度较低流动性较差的铝水、浇入压室铝水表面的杂质、氧化皮和一部分高温流动性好的合金组成。高温的铝水流动性较好,一般都在前边流动;靠后边的都是温度较低流动性较差的铝水。 三、料饼厚度过薄对产品质量产生的影响料饼过薄,料饼中无高温的、流动性好和可流动充填型腔的铝水,也无能够向型腔传递压力的铝水。产品容易形成欠铸、冷隔、气孔、发黑、疏松、缩孔、产品
6、机械性能下降等缺陷。原因如下: 1、型腔中的铝水接受不到压射和增压时的压力,铝水不能在高压下结晶,形成不了大量细小的内部晶粒组织。产品内部组织粗大、疏松,结构不致密、机械强度低、易断裂。 2、起不到把浇道中的铝水压入型腔补缩的作用,型腔中的铝水不能在压力下凝固收缩。产品内部较厚的部位凝固收缩时接受不到压力,容易出现缩孔和缩松,增加了产品内部的孔隙率。 3、型腔中的铝水不在压力下凝固,铝水中冷却、凝固时析出的氢气接受不到压力会膨胀,形成较大的气孔。 4、若是因浇注量过少引起料饼过薄,是铝水没有充满浇道就开始高速压射时,没有很好地排除浇道和型腔中的气体,产品易形成气孔、憋气、表面汤回(冷隔)、发黑
7、等缺陷。若是因飞料造成料饼厚度过薄,压力损失掉,产品会出现气孔、疏松、缩孔、产品机械性能下降等缺陷。 四、料饼厚度过厚的不良影响 1、浪费铝水,使回炉料增多,材料损耗增大。 2、料饼易爆裂炸开,一是伤人、二是会飞出铝液粘到模具或产品上。 3、使铝水低速时部分铝水已经流入型腔后才开始高速压铸,低速时先流入型腔的铝水会先冷却形成汤回、花纹。 4、低速时流入内浇口处的铝水会先冷却凝固,这些先冷却凝固的料会堵住内浇口影响充填。内浇口处先冷却凝固的料,会与高速充填的产品分层,切边后断口光亮,会出现产品缺肉。 压铸件夹杂及缩孔缺陷的控制 发布时间:2012-4-10 9:21:25 来源:互联网文字【大
8、中 小】 夹杂及缩孔是两种压铸生产的常见缺陷,严重时会造成压铸件的报废产生。生产中应加以注意和避免。1、夹杂1)缺陷特征压铸件外表或内部出现夹杂物,这些夹杂物多为金属氧化物、涂料残留物等。夹杂既影响外观,还会使铸件内部组织不致密。2)产生原因金属熔化时,在高温下容易与氧气反应形成氧化物;熔化金属的坩埚用涂料:如氧化锌、水玻璃等脱落后都浮在液态金属面上;变质处理中的化学反应物,还有原材料本身含有较多的夹杂物。上述物质如未排除而进入模具型腔,就会在铸件中滞留而形成夹杂物。3)防止措施金属熔化温度严格控制在工艺规定范围之内,浇注之前应尽量做好排渣处理,即把浮在金属液面上的夹杂物除净,并适当增大模具排
9、气槽横截面积,合理设置集渣包。2、缩孔1)缩孔特征压铸件内局部出现组织稀疏,有的甚至呈蜂窝状,影响铸件强度。2)产生原因液态金属充满型腔后,在收缩过程中得不到足量补充,容易发生在厚薄不均的铸件上。特别是注射压力过低、保压时间短,更容易出现这种缺陷。3)防止措施浇注系统可放大些,并开在压铸件的厚大部位。在缩松部位处设置冒口,用于补缩。零件结构设计应避免厚薄不均或在厚大部位改成加强筋形式。压铸工艺合理,如浇注温度不能过高,防止收缩量大,压力应合适,保压时间足够。 减少压铸件气孔的基本方法 发布时间:2011-7-20 9:41:41 来源:互联网文字【大 中 小】 文/王敏摘要:消除压铸件气孔的方
10、法。包含4个方面:熔炼、模具、压铸参数和分型剂。其中模具因素最重要.最容易被忽视的因素是压室充满度和快慢压射转换点。文中用实例进行了讨论。关健词:压铸、气孔、工艺参数减少压铸件气孔主要从熔炼、模具、压铸参数、分型剂这4个方面采取措施。其中,模具方面的因素最重要、最活跃,压铸参数中压室充满度、快慢压射的转换点容易被忽视。本文重点阐述这两点并以一个实际例子加以说明。一、模具对于一个压铸件的质量,浇注系统是决定性因素。它作为一个系统,有进料与出气、排渣环节,由很多要素构成,目的是使合金液以合适的流态进入型腔填充的同时能最大限度地排出系统内的气体。所谓合适的流态,就是不产生液流相撞、卷气、囊气、速度平
11、稳。否则,排溢系统再好,气也排不了。由于铸件各有特点,实践性、经验性很强,现在虽然有计算机模拟分析软件帮助我们看到某种结果,但不好的结果,还是靠人去改变方案。在如图1所示的例子中,我们体会到在这些方案里浇口的入口方向和分布方式对排气的重要影响。入口方向一定要尽量保证液流沿型壁填充,有利排气,分布方式考虑到哪种分布能更有序填充,不憋气。二、压铸工艺参数压铸工艺参数有很多,对气孔率影响较大的有两个。浇道的入口方向、分布方式对能否有序填充的同时顺利排气很重要,这与第一级压射的长短(不妨称为排气行程)和速度关系很大。快压射早了(指在融体进人浇道前),压室、型腔排气不充分,产生卷气;过迟会产生冷隔、欠铸
12、。第一级压射本来是为排出压室与型腔内气体而设置的,能否达到这个效果,还取决于一种“临界速度”,该速度是与压室充满度有关的不卷气速度,生产中应该满足它。压室充满度对铸件气孔缺陷的影响十分显著。充满度高,慢压射时不易卷气,压室上方空气少,带入型腔的气也就少,所以在不影响填充率的条件下,压室直径应尽量取小。短压室的出现正是这种要求的产物,既保证较高的充满度又不降低填充流量。三、实例有1种汽车上的壳盖类零件质量为1.05kg,采用Al合金ADC12,壁厚为2.8rnm。原设计浇注系统如图2所示。压铸机锁模力为6300kN,压室直径为80mm。这种条件下,经多次调整参数进行生产,合格率总是很低,气密性检
13、验30%是废品,气孔废品率高达70%一85%。原因如下:原浇道方向和布置形式所形成的流态对排气十分不利。原第4处与第5处浇道液流交汇裹气,入口处又容易先将分型面封死使填充型腔深处时气体无法排出。压室充满度太低,只有30%,大量的空气被混人型腔后又排出困难。修改方案:去除第5处浇道,其他浇道人口方向改成如图3形式,将压室直径改成价70mm,充满度达到42%,浇道转弯半径加大,使液流平稳顺杨,压铸时,第一级压射过程按计算值调定。这样改变后,结果十分理想。气密性检验全部合格,取消了原来的浸渗工艺,机加工后的表面气孔全无,突破了生产这个铸件的两大难关,给企业创造了经济效益。 从内浇口入手提高压铸模具的
14、“适应性” 发布时间:2011-7-21 13:38:26 来源:互联网文字【大 中 小】 文/崔爱军【摘要】本文主通过实例从内浇口的面积、导向角等方面,论述了内浇口与模具“适应性”之间的关系,为今后的模具设计及压铸生产中类似问题的解决提供了思路。【关键词】内浇口、压铸模、适应性所谓模具的适应性是指同一副模具在不同的压铸机上,由不同的人员操作以及在较宽范围内的工艺参数的条件下,生产出合格压铸件的顺利程度而在压铸实际生产过程中,影响压铸件质量的因素较多。诸如:压射压力、压射速度、快压启动位置、熔炉保温温度、模具温度、模具结构等,在这些因素中哪些因素对压铸件的质量影响较大呢?在压铸生产企业中一个普
15、遍的观点是:模具对压铸件质量的影响占了百分之七十,而内浇口参数对模具的适应性又起着举足轻重的作用。现略举几例说明模具内浇口对模具的“适应性”的影响及处理方式。一、内浇口截面积对压铸件质量的影响在一定的压射条件下,内浇口面积过大时,会使填充速度过低,金属过早凝固,甚至导致充填不足;而过小的内浇口面积,会使喷射加剧,增加热量损失,产生涡流并卷入过多的气体,对模具冲刷加剧,导致模具早期报废。内浇口截面积的大小,常常是凭经验在设计绘图过程中来确定的,单纯地依据经验公式所计算内浇口的截面积,割裂了内浇口截面积与充填速度和充填时间的密切联系,内浇口截面积与充填速度和充填时间之间存在着不能有效匹配的风险,设
16、计结果能在多大的工艺范围内进行修改,设计者并不清楚。个人经验不同得出的内浇口截面积相差悬殊,在实践中就会出现模具适应性差的现象;生产实践中模具内浇口截面积与压铸件不匹配的情况屡见不鲜,当这种不匹配性差距不大时,其表现并不是很明显,在模具使用中,操作人员常常会感到模具不好用;当其差距较大时就会明显的表现出来,压铸件无法成形、废品率高、质量不稳定等。下面所述是一个真实的生产实例;这是一个桶状的壳体类零件,平均壁厚4.5mm左右;采用的合金为:ADC12, 压铸件重量(包含净重和渣包)4700克,内浇口截面积460mm见附图1。使用设备:800T压铸机 压射头直径110。主要工艺参数为:浇铸温度65
17、0、模具温度230、快压射行程202mm、快压射手轮开度7圈。在生产过程中发现压铸件填充不满,表面质量差:废品率高达50以上:从图1可以看出,这是一个形状比较简单的压铸件。其浇排系统的设计基本上是合理的,一般情况下,上述压铸工艺是能生产出合格产品的。针对出现的质量问题我们本着先易后难的方针,再次对生产工艺进行了适当的调整但是,基本无效。为此,我们根据模具和压铸机的参数画出了PQ2图:如图2所示。从图上发现,生产发生异常的主要原因是内浇口截面积与压射系统不协调引起的。我们知道,对于体积较大的产品,当浇口面积较小时将导致填充时间过长,型腔不能完全填充或填充不满。制品表面出现大面积的冷隔及夹杂着大量
18、的冷料块,整体强度严重下降;这就要求压射系统所能达到的实际填充时间要小于压铸件需要的填充时间,压铸件需要的最长填充时间的计算可参见下式:T=KX1000(TI-TF+SZ)/(TF-TD)其中:T为压铸件需要的最长填充时间,单位ms,K为系数,与所用的模具材料有关,常用模具钢H13的值为0.0346,X为压铸件平均壁厚,单位mm,TI为金属液温度,单位,TF为金属液最低流动温度,单位,S为目标固体百分率,单位%,Z为固体系数,单位%,TD为模具温度,单位。根据上式计算的充型时间为88.8ms 这是一个与工艺参数、压铸件壁厚相关,而与内浇口截面积无关的经验计算值:由P-Q2计算可知,在内浇13面
19、积为460mm时,该压铸模具和设备所组成的压铸系统所能达到的最小充型时间为86.3ms。显然,这个值与压铸件需要的最长填充时间相差无几,在这种条件下,生产过程中就会对工艺参数要求很高,工艺的略微波动会造成压铸件表面产生各种各样的缺陷,这样的模具如果放到一台性能更高的压铸机上生产也有可能顺利的生产合格的压铸件,但在现有的压铸机上是很难正常生产的。根据计算,当内浇口面积达到700mm2 时,系统所能达到的最小充型时间为64.9ms,这个值与压铸件需要的最长填充时间相比留有较大的调整空间,这就为压铸工艺的调整留下了充分的余地。这样的模具基本可以适应各种不同性能的压铸设备上生产用修改后的模具试生产,操
20、作人员普遍反映,模具好用了、废品率也下降到了3左右。二、内浇口形状对压铸件质量的影响尽管压铸件内浇口的形状与压铸件的外形有很大的关系。实际设计中更是千差万别,但是参照一些模具设计手册和一些成功的经验数据,一般都能设计出比较合理的内浇口结构。对于各种内浇口的设计,请参阅相关资料,本文不再赘述。下面主要就浇口设计中的局部细节对模具“适应性”的影响加以浅述。内浇口导向角度对压铸件成型的影响在模具使用中发现,内浇口的导向角对压铸件的填充起着一个至关重要的作用,不恰当的导向角度将会导致模具的“适应性”大大降低 下面以摩托车上常见的一种零件缓冲体为例加以说明。该产品采用的合金为:ADC12,压铸件重量(包
21、含净重和渣包)705克,平均壁厚4.3mm,单腔内浇口面积145mm2 ;使用设备:280T压铸机压射头直径60模具结构为一模两腔,主要工艺参数为:保温温度630、模具温度220、快压射行程95mm、快压射手轮开度4.5圈。生产过程中发现在图3所示部位产品油污、夹皮(所谓夹皮是指:压铸件局部出现分层)严重;不同的操作人员生产,废品率相差较大,这就是个典型的模具“适应性”差的现象;技术熟练的操作人员基本上能正常生产,熟练程度稍差的人员,几乎不能正常生产。1)从模具填充上分析从压铸系统的浇道部分可看出,其扇形角度很小,内浇口导向角几乎为零(见图3),金属液进入型腔后就快速的冲击到型腔对面,封闭两侧
22、的两个渣包造成图3所示的局部区域内的空气、脱模剂混和气体等无法正常排出,导致压铸件局部夹皮油污严重。2 )从人的因素分析人的因素方面,主要在于脱模剂的喷涂控制,由于压铸生产是采用手工喷涂脱模剂,每个人的经验不同,喷涂差异较大。如果脱模剂喷涂过多,则产生废品,喷涂过少又易发生粘模。由于模具排气不畅,稍微的喷涂差异,就会造成产品报废只有个别技术熟练的操作人员才能进行生产,对脱模剂喷涂量的要求,到了一个近乎苛刻的地步。根据上述分析,解决问题的思路在于改善缺陷部位的排气;最后决定仍然利用原有的浇排系统,通过改变内浇口的导向角来改进图4。在A处所示部位增加了内浇口的导向角。通过内浇口导向角度的更改,改善
23、了模具的填充质量,提高了模具的“适应性”。浇口与压铸件本体结合处细节的处理在生产壳类零件时,经常会发生的一个问题是压铸件在内浇口处开裂,造成产品报废。仔细观察压铸件开裂部位会发现,所有的裂纹均是沿着内浇口的前沿向压铸件内部延伸的;其形成的主要原因在于内浇口处的局部尖角所形成的内部应力较大。而浇口的去除,多数是靠敲击去除的,操作人员在去除浇口时,由于浇口处局部受力较大,造成了压铸件开裂。针对此类开裂问题,可对模具做一个简单的处理,消除局部尖角即可。对模具处理后,压铸件未再发生过类似的问题。三、结束语通过上述实例分析,我们可以看出,压铸模具的内浇口设计对于压铸模具的“适应性”的影响是很大的,一个合
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 压铸 生产 中常 模具 存在 问题 注意
链接地址:https://www.31ppt.com/p-2948461.html