两级圆柱齿轮减速器课程设计电动绞车传动.doc
《两级圆柱齿轮减速器课程设计电动绞车传动.doc》由会员分享,可在线阅读,更多相关《两级圆柱齿轮减速器课程设计电动绞车传动.doc(35页珍藏版)》请在三一办公上搜索。
1、一、课程设计方案1传动装置简图带式运输机的传动装置如如图1所示 图12原始数据带式运输机传动装置的原始数据如下表所示带的圆周力F/N带速V/(m/s)滚筒直径D/mm15502 3003工作条件三班制,使用年限10年,连续单向运转,载荷平稳,小批量生产,运输链速度允许误差为链速度的.传动方案: 图2二、电动机的选择(1)选择电动机类型按工作要求用Y型全封闭自扇冷式笼型三相异步电动机,电压为380V。(2)选择电动机容量电动机所需工作功率,按参考文献1的(2-1)为由式(2-1)得 kw根据带式运输机工作的类型,可取工作机效率 0.96传动装置的总效率 查参考文献1第10章中表10-2机械传动和
2、摩擦副的效率概略值,确定各部分效率为:联轴器效率,滚动轴承传动效率(一对)开式齿轮传动效率,代入得 所需电动机功率为 因载荷平稳,电动机额定功率略大于即可,由参考文献1第19章所示Y型三相异步电动机的技术参数,选电动机的额定功率为4 kw。(3)确定电动机转速卷筒轴工作转速为 由参考文献1表2-2可知,两级圆柱齿轮减速器一般传动比范围为840,则总传动比合理范围为,故电动机转速的可选范围为 符合这一范围的同步转速有1500和3000两种方案进行比较。由参考文献1表19-1查得电动机数据及计算出的总传动比列于表1中 表1 电动机数据及总传动比方案电动机型 号额定功率电动机转速n/()总传动 比
3、同 步转 速满 载转 速1Y112M-441500140011.32Y112M-243000289022.7表1中,方案2的电动机重量轻,价格便宜,但总传动比大,传动装置外廓尺寸大,结构不紧凑,制造成本高,故不可取。综合考虑电动机和传动装置的尺寸,重量,价格以及总传动比,选用方案1较好,即选定电动机型号为Y112M-4。 三传动装置的总传动比及其分配计算总传动比: 根据电动机满载转速及工作机转速,可得传动装置所要求的总传动比为 合理分配各级传动比:对于两级展开式圆柱齿轮减速器,当两级齿轮的材料的材质相同,齿宽系数相同时,为使各级大齿轮浸油深度大致相近(即两个大齿轮分度园直径接近),且低速级大齿
4、直径略大,传动比可按下式分配,即式中:高速级传动比 减速器传动比又因为圆柱齿轮传动比的单级传动比常用值为35,所以选,。 四计算传动装置的运动和动力参数传动装置运动和动力参数的计算(1)各轴转速(2)各轴输入功率工作机轴(3)各轴输入转距工作机轴表2 运动和动力参数轴号功率P/kw转距T/(N.m)转 速n/(r/min)传动比i效率电动机轴3.64 24.14 1440 1 0.99高速轴3.60 23.90 14403.98 0.97中速轴 3.50 92.20 361.81 2.84 0.97低速轴 3.39 253.99 127.43 1 0.99工作机轴 3.37 251.45 12
5、7.43五齿轮零件的设计计算(一)高速级齿轮的设计设计参数:两级展开式圆柱齿轮减速器,高速级常用斜齿轮,则设计第一传动所用齿轮为斜齿圆柱齿传动。1选定齿轮的精度等级、材料及齿数。1)运输机为一般工作机器,转速不高,故选用7级精度(GB10095-88)2)材料及热处理:由参考文献2表10-1选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。3)试选小齿轮齿数,大齿轮齿数,取4)选取螺旋角。初选螺旋角=14。2.按按齿面接触强度设计按参考文献2式(10-21)计算,即(1)确定公式内的各计算数值1)试选Kt=1.62
6、)由参考文献2图10-30选取区域系数ZH=2.4333)由参考文献2表10-7选取齿宽系数d=14)由参考文献2图10-26查得5)小齿轮转距23.90N.mm6)由由参考文2表10-6查得材料的弹性影响系数7)由参考文献2图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限;大齿轮的接触疲劳强度极限由参考文献2图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限;大齿轮的接触疲劳强度极限8)由参考文献2式(10-13)计算应力循环次数9)由参考文献2图10-19查得接触疲劳寿命系;10)计算接触疲劳许用应力取失效概率为1%,安全系数S=1,由参考文献2式(10-12)得(2)计算1)试计算
7、小齿轮分度圆直径,有计算公式得2)计算圆周速度3)计算齿宽b及模数4)计算纵向重合度5)计算载荷系数K已知载荷平稳,由参考文献2表10-2选取使用系数取根据,7级精度,由参考文献2图10-8查得动载系数;由表10-4查得的计算公式和直齿轮的相同故;由参考文献2图10-13查得由表10-3查得。故载荷系数 6)按实际的载荷系数校正所得的分度圆直径,由参考文献2式(10-10a)得 7)计算模数3按齿根弯曲强度设计由参考文献2式(10-17) (1)确定计算参数1)计算载荷系数2)根据纵向重合度,从参考文献2图10-28查得螺旋角影响系数Yb=0.883)计算当量齿数4)查取齿型系数由参考文献2表
8、10-5查得;5)查取应力校正系数由参考文献2表10-5查得; 6)由参考文献2图10-20c查得小齿轮的弯曲疲劳极限,大齿轮的弯曲疲劳极限7)由参考文献2图10-18,查得弯曲疲劳寿命系数,;8)计算弯曲疲劳许用应力 取弯曲疲劳许用应力S=1.4,由文献2式(10-12)得 9)计算大,小齿轮的 ,并加以比较大齿轮的数值大(2)设计计算对比计算结果,由齿面接触疲劳强度计算的法面模数大于由齿跟弯曲疲劳强度计算的法面模数,取,已可满足弯曲强度。但为了同时满足接触疲劳强度,需按接触疲劳强度算出的分度圆直径=40.25mm来计算应有的齿数。于是由 取=26,则,取=103。4几何尺寸计算(1)计算中
9、心距 将中心距圆整为100mm。(2)按圆整后的中心距修正螺旋角因b值改变不多,故参数、等不必修正。(3)计算大、小齿轮的分度圆直径 (4)计算齿轮宽度 mm圆整后取;。(二)低速级齿轮的设计 设计参数:1选定齿轮的类型、精度等级、材料及齿数。1)按图2所示的传动方案,选用直齿轮圆柱齿轮传动。2)运输机为一般工作机器,转速不高,故选用7级精度(GB10095-88)3)材料及热处理:选择参考文献2表10-1小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。4)试选小齿轮齿数,大齿轮齿数,取2按齿面接触强度设计按参考文献
10、2式(10-9a)进行试算,即 (1)确定公式内的各计算数值1)试选Kt=1.32)由参考文献2表10-7选取齿宽系数d=13)小齿轮传递的转距4)由参考文献2表10-6查得材料的弹性影响系数5)由参考文献2图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限;大齿轮的接触疲劳强度极限6)由参考文献2式(10-19)计算应力循环次数 7)由参考文献2图10-19查得接触疲劳寿命系;8)计算接触疲劳许用应力取失效概率为1%,安全系数S=1,由参考文献2式(10-12)得(2)计算1)试计算小齿轮分度圆直径,有计算公式得2)计算圆周速度3) 计算齿宽b 4)计算齿宽与齿高之比 模数 齿高 5)计算
11、载荷系数K已知载荷平稳,由参考文献2表10-2选取使用系数取;根据,7级精度,由参考文献2图10-8查得动载系数;直齿轮,;由参考文献2图10-4用插值法查得7级精度,小齿轮相对支承非对称布置时, ;由,查参考文献2图10-13得,故载荷系数 6)按实际的载荷系数校正所得的分度圆直径,由参考文献式(10-10a)得 7)计算模数3. 按齿根弯曲强度设计由参考文献2式(10-5) (1)计算公式内的各计算数值1)由参考文献2中图10-20c查得小齿轮的弯曲疲劳强度极限,大齿轮的弯曲疲劳极限;2)由参考文献2图10-18,查得弯曲疲劳寿命系数,;3)计算弯曲疲劳许用应力 取弯曲疲劳许用应力S=1.
12、4,由参考文献2式(10-12)得 4)计算载荷系数5)查取齿型系数由参考文献2表10-5查得;。6)查取应力校正系数由文献2表10-5查得;。7)计算大,小齿轮的 ,并加以比较大齿轮的数值大(2) 设计计算对比计算结果,由齿面接触疲劳强度计算的法面模数m大于由齿跟弯曲疲劳强度计算的法面模数,由于齿轮模数m的大小主要取决于弯曲疲劳强度的承载能力,而齿面接触疲劳强度所决定的承载能力仅与齿轮直径(即模数与齿数的乘积)有关,可取由弯曲强度算得的模数2.22并就近圆整为标准值,并按接触疲劳强度算出的分度圆直径=66.10mm,算出小齿轮齿数 取=26,则,取=74。4几何尺寸计算1)计算大、小齿轮的分
13、度圆直径 2)计算中心距 3)计算齿轮宽度 mm则取;。小结: 表 3项目d/mmzmn/mmB/mmb材料旋向高速级齿轮140.20261.55040Gr左旋齿轮2159.281034545钢右旋低速级齿轮365262.57040Gr齿轮4185746545钢六轴的设计齿轮机构的参数列于下表: 表4级别高速级低速级261032674 1.51.5464/mm2.52.50 1齿宽/mm;(一)高速轴的设计。已知参数:,1求作用在齿轮上的力 因已知高速级小齿轮的分度圆直径为 而 圆周力,径向力及轴向力的方向如图3所示。 图3 高速轴结构图2初步确定轴的最小直径 先按参考文献2式(15-2)初步
14、估算轴的最小直径。选取轴的材料为45钢,调质处理。根据参考文献2表15-3,取,于是得高速轴的最小直径显然是安装联轴器处轴的直径(图4)。为了使所选的轴与联轴器的孔径相适应,需同时选取联轴器型号。联轴器的计算转距 ,查参考文献2表14-1,考虑到转距变化很小,故取,则按照计算转距应小于联轴器公称转距条件,查参考文献1标准GB/T5014-2003,选用LX1型弹性柱销联轴器,其公称转距为250000N.mm。半联轴器的孔径,故取,半联轴器长度L=42mm,半联轴器与轴配合的毂孔长度。3轴的结构设计(1)拟定轴上零件的装配方案,如图4。(2)根据轴向定位的要求确定轴的各段直径和长度1)为了满足半
15、联轴器的轴向定位要求,-轴段右端需制出一轴肩,故取-段的直径,左端用轴端挡圈定位,按轴端直径取挡圈直径D=22mm。半联轴器与轴配合的毂孔长度,为了保证轴端挡圈只压在半联轴器上而不压在轴的端面上,故-段长度应比略短一些,现取。2)初步选择滚动轴承。因轴承同时受有径向力和轴向力的作用,故选用单列圆锥滚子轴承。参照工作要求并根据,由轴承产品目录中初步选取0基本游隙组、标准精度级的单列圆锥滚子轴承30205,其尺寸为的,故。3)由于齿根圆到键槽底部的距离(为端面模数),所以把齿轮做在轴上,形成齿轮轴。参照工作要求并根据,左端滚动轴承与轴之间采用套筒定位,故选。同理右端滚动轴承与轴之间也采用套筒定位,
16、因此,取。 4)轴承端盖的总宽度为20mm,(由减速器及轴承端盖的结构设计而定)。根据轴承端盖的装拆及便于对轴承添加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离,故取。5)已知高速级齿轮轮毂长b=45mm,做成齿轮轴, 则。6)取齿轮距箱体内壁之距离a=16mm,圆柱齿轮与圆柱齿轮之间的距离为c=20mm,考虑到箱体的铸造误差,在确定滚动轴承位置时,应距箱体内壁一段距离是s,取s=8mm。已知滚动轴承宽度T=16.25mm,低速级大齿轮轮毂长L=70mm,套筒长。 则 至此,已初步确定了轴的各段直径和长度。(3)轴上零件的周向定位半联轴器与轴的周向定位采用平键连接。半联轴器与轴连接,按
17、由参数文献2表6-1查得平键截面,键槽用键槽铣刀加工,长为25mm;同时为了保证半联轴器与轴配合有良好的对中性,故选择半联轴器与轴配合为。滚动轴承与轴的周向定位是由过渡配合来保证的,此处选轴的直径尺寸公差为m6。4)确定轴上圆角和倒角尺寸参考参考文献2表15-2,取轴端倒角为,各轴肩处的圆角半径见图3。4求轴上的载荷首先根据轴的结构图(图3)做出轴的计算简图(图4),在确定轴承的支点位置时,应从手册中查取a值。对于30205型圆锥滚子轴承,由参考文献1中查得a=12.5mm。因此,作为简支梁的轴的支承跨距。根据轴的计算简图做出轴的弯距图和扭距图(图4)。 图4 高速轴弯距图从轴的结构图以及弯距
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 两级 圆柱齿轮 减速器 课程设计 电动 绞车 传动
链接地址:https://www.31ppt.com/p-2947917.html