轴类工件的质量分析 数控专业毕业论文.doc
《轴类工件的质量分析 数控专业毕业论文.doc》由会员分享,可在线阅读,更多相关《轴类工件的质量分析 数控专业毕业论文.doc(24页珍藏版)》请在三一办公上搜索。
1、 毕 业 论 文题 目 轴类工件的质量分析 专 业 数控加工与维护工程 班 级 学 生 指导教师 西安工业大学函授部二 0 0 九 年摘 要论述了现代工业对零件加工表面完整性的要求,分析了零件加工表面完整性对零件使用性能的影响;讨论了振动切削的原理,指出振动切削是提高零件加工表面完整性的重要方法。 机械加工过程中的振动会恶化加工表面质量,损坏切削刀具,降低生产率。本文着重介绍振动的两种类型,振动产生的原因及消除方法。 随着科技与生产的发展,高强度钢、高温合金、钛合金等新材料的应用日益增多。这些材料虽然具有良好的使用性能,但大多加工性能差,对其进行切削和磨削加工相当困难。因此在加工这些零件时,不
2、仅要求保证其尺寸精度,而且要求保证其加工表面完整性。为了充分发挥新型材料良好的使用性能,研究和解决零件加工表面完整性问题显得尤为重要。 振动是在机械加工过程中,因机床工件或刀具发生周期性的跳动。加工过程中如发生振动,会使工件已加工表面上出现条痕或布纹状痕迹,使表面光洁度显著下降,还会使机床、夹具中的连接零件松动,缩短机床使用寿命,影响工件在夹具中的正确定位。此外,由于振动,势必降低切削速度,损坏切削工具,降低生产率,造成噪声污染。 一、 表面形变强化原理通过机械手段(滚压、内挤压和喷丸等)在金属表面产生压缩变形,使表面形成形变硬化层(此形变硬化层的深度可达0.51.5mm),从而使表面层硬度、
3、强度提高 当零件的加工质量要求较高时,应把整个数控加工过程划分为几个阶段,通常划分为粗加工、半精加工和精加工三个阶段。如果零件的精度要求很高,还需要安排专门的光整加工阶段。必要时,如果毛坯表面比较粗糙,余量也较大,还需要安排先进行荒加工和初始基准加工。 1粗加工阶段粗加工阶段是为了去除毛料或毛坯上大部分的余量,使毛料或毛坯在形状和尺寸上基本接近零件的成品状态,这个阶段最主要的问题是如何获得较高的生产效率。2半精加工阶段半精加工阶段是使零件的主要表面达到工艺规定的加工精度,并保留一定的精加工余量,为精加工做好准备。半精加工阶段一般安排在热处理之前进行,在这个阶段,可以将不影响零件使用性能和设计精
4、度的零件次要表面加工完毕。3精加工阶段精加工阶段的目的是保证加工零件达到设计图纸所规定的尺寸精度、技术要求和表面质量要求。零件精加工的余量都较小,主要考虑的问题是如何达到最高的加工精度和表面质量。4光整加工阶段当零件的加工精度要求较高,如尺寸精度要求为IT6级以上,以及表面粗糙度要求较小(Ra=0.2m)时,在精加工阶段之后就必须安排光整加工,以达到最终的设计要求。关键词:机械加工 振动原因 防止方法 切削 目 录第一章 零件加工表面完整性对零件使用性能的影响1.1表面粗糙度对零件使用性能的影响1.2冷作硬化对零件使用性能的影响1.3残余应力对零件使用性能的影响1.4应用振动切削改善零件加工表
5、面完整性第二章 刀具夹头2.1如何正确选择刀具夹头2.2液压式刀具夹头2.3多边夹紧式刀具夹头2.4通用性刀具夹头2.5热装式道具夹头第三章 振动切削改善零件加工表面完整性的优势3.1降低切削力和切削温度3.2表面粗糙度小、加工精度高3.3刀具使用寿命长3.4切削液使用效果好3.5已加工表面的耐磨性、耐腐蚀性提高第四章 磨削的表面质量4.1用砂带磨削4.2分别用正交实验的单因素实验对砂带磨削4.3粗粒度砂带磨削第五章 加工后表面层的状态5.1磨削热表面氧化层非晶态组织层高温回火层二层回火层磨削裂纹第六章 机械加工过程中的振动6.1机械加工振动的表现和特点6.1.1强迫振动6.1.2强迫振动的特
6、点6.2自激振动6.2.1自激振动的特点6.2.2振动产生的原因分析6.2.3强迫振动产生的原因6.2.4自激振动产生的原因6.3防止和消除振动的方法6.3.1消除强迫振动的措施6.3.2消除自激振动的措施第七章 表面粗糙度对工件的影响7.1表面粗糙度的性质结束语致谢参考文献第一章 零件加工表面完整性对零件使用性能的影响1.1表面粗糙度对零件使用性能的影响表面粗糙度反映已加工表面的微观不平度高度。已加工表面粗糙度按其在加工过程中的形成方向分为纵向和横向粗糙度,一般将沿切削速度方向的粗糙度称为纵向粗糙度,垂直于切削速度方向(沿进给运动方向)的粗糙度称为横向粗糙度。一般纵向粗糙度主要决定于切削过程
7、中产生的积屑瘤、鳞刺、刀具的边界磨损及加工过程中的变形与振动;横向粗糙度的产生除上述原因外,更重要的是受残留面积高度及副刀刃对已加工表面的挤压而产生的材料隆起等因素所支配,一般横向粗糙度比纵向粗糙度大得多。 当两个互相摩擦的零件配合时,由于零件表面粗糙不平,只有零件表面一些凸峰相互接触,而不是全部表面配合接触。由于实际接触面积小,因此单位面积上压力很大。当零件相互摩擦时,表面凸峰很快被压扁压平,产生剧烈磨损,从而影响零件的配合性质。同时,粗糙表面的耐腐蚀性比光滑表面差,因为腐蚀性物质容易聚集在粗糙表面的凹谷里和裂缝处,并逐渐扩大其腐蚀作用。 1.2冷作硬化对零件使用性能的影响 表面冷作硬化通常
8、对常温下工作的零件较为有利,有时能提高其疲劳强度,但对高温下工作的零件则不利。由于零件表面层硬度在高温作用下发生改变,零件表面层会发生残余应力松驰,塑性变形层内的原子扩散迁移率就会增加,从而导致合金元素加速氧化和晶界层软化。此时,冷作硬化层越深、冷作硬化程度越大、温度越高、时间越长,塑性变形层内上述变化过程就越剧烈,进而导致零件沿冷作硬化层晶界形成表面起始裂纹。起始裂纹进一步扩展就会成为疲劳裂纹,从而使零件疲劳强度下降。切削加工后表面层的硬化程度取决于金属在切削过程中强化、弱化和相变作用的综合结果。当切削过程中强烈变形起主导作用时,已加工表面就产生加工硬化;而当切削温度起主导作用时,往往引起工
9、件表层硬度降低和相变。因此,在加工中增大变形和摩擦都将加剧加工硬化现象,而较高的温度、较低的工件材料熔点则会减轻冷作硬化作用。 1.3残余应力对零件使用性能的影响 残余应力是指在没有外力作用情况下零件内部为保持平衡而存留的应力。残余应力的产生原因,一是在切削过程中由于塑性变形而产生的机械应力;二是由于切削加工中切削温度的变化而产生的热应力;三是由于相变引起体积变化而产生的应力。其中,切削表面层由于塑性变形,表面被拉长,基体的弹性变形易恢复,而表层的塑性变形不能恢复,因此表层受压,基体受拉,在表层产生残余压应力;切削温度的升高导致工件温度升高,但工件表层温度高于基体温度,待工件全部冷却后,表层冷
10、却收缩受到基体的牵制,表面产生残余拉应力。影响残余应力的因素多而复杂,试验表明:凡能减小塑性变形和降低切削温度的因素都能使已加工表面的残余应力减小。 残余应力对零件的使用性能有很大影响。一般说来,如果残余压应力在表面层内足够大且分布合理,会提高零件的疲劳强度;而残余拉应力则会引起裂纹,使零件产生疲劳断裂和应力腐蚀。 1.4应用振动切削改善零件加工表面完整性 综上所述,改善零件加工表面完整性对于改善零件使用性能、延长零件使用寿命十分重要。控制加工表面完整性的方法较多。在普通切削、磨削加工中,可针对不同的加工工艺方法,合理选择刀具材料、刀具几何参数、切削用量和切削液,对零件进行表面处理和表面强化,
11、从而得到要求的加工表面粗糙度和表面质量,改善零件加工表面完整性;此外,利用一些新的切削加工技术,如振动切削、低温切削、激光切削、水力切削等,也可达到提高加工表面质量、改善加工表面完整性的目的。 在改善零件加工表面完整性的众多方法中,振动切削技术较易实现且应用效果很好。 第二章 刀具夹头2.1如何正确选择刀具夹头对于刀具夹头而言,最重要的性能要求是高速旋转时对刀具的夹持力、径跳精度以及可减小振动的平衡质量。刀具夹头的径跳精度必须小于0.003mm。为了支持机床直线驱动的高动力性,减轻由主轴、夹头和刀具组成的系统的重量对于获得良好的切削加工结果十分有利。为了获得良好的切削加工结果,用户对刀具夹头的
12、要求通常已有清晰的定义,而市场上有各种不同种类的夹头能够满足这些要求。由于不同的刀具夹持系统具有不同的技术特点和加工优势,因此根据用户的具体加工用途,有可能找到最理想的刀具夹头。主要有:液压式刀具夹头;多边夹紧式刀具夹头;通用型刀具夹头;热装式刀具夹头。2.1.1液压式刀具夹头液压式刀具夹头是一种适用于大多数切削加工用途的刀具夹持系统。液压式刀具夹头采用了与常规夹头不同的刀具夹紧方式,作用力由一个螺旋机构(由螺纹、活塞和密封件组成)引入,通过操作(转动)螺旋机构,可以在夹头内部产生均匀的液压力。这种压力传导到一个膨胀钢套上,用于夹紧刀具。液压式刀具夹持系统可达到最佳的径跳精度和小于0.003m
13、m的重复性。液压式夹头夹持刀具时,利用刀柄中的液压油,可以提供很高的夹持力。由于避免了因刀具振动而引起的工件材料少量凸起,用户可以获得较高的工件表面加工质量和较长的夹头工作时间。液压式刀具夹头不仅可以免维护和防止污垢进入,而且易于使用,并可为刀具提供较高的夹持安全性。2.1.2多边夹紧式刀具夹头多边夹紧式刀具夹头的结构设计异常简单:利用一个磨削的多边形孔在三个位置牢固地夹紧刀具。在高速切削加工中,多边夹紧是一种理想的刀具夹持方式,因为刀具的夹紧是通过夹头的弹性变形来实现的。这种刀具夹头的主要优点是其外形结构非常紧凑小巧。目前市场上有两种类型的多边夹紧式刀具夹头,可以覆盖各种不同的切削加工。一类
14、是“细长型”夹头,其突出特点是夹持刀具的柄部很细,悬伸较长,可达性好。这种夹头也可用于夹持较短的刀具,优点是使用成本较低。另一类是“高刚性”夹头,其柄体较大,因此刚性也较好,能提供质量较高的径向力补偿。这两种类型的夹头都可以采用加长杆,从而在完成难加工任务时具有更好的加工柔性。由于刀具或加长杆的夹紧是在刀具柄部材料的弹性范围内实现的,因此不会影响刀具的使用寿命。利用一个外部夹紧装置,可在几秒钟内完成刀具的更换。该装置不需要任何外部能源,可在任何地方使用。这种特点使多边夹紧式刀具夹持系统非常适合需要频繁换刀的加工场合。2.1.3通用型刀具夹头通用型刀具夹头有两种可选类型:一种适用于轻载加工,另一
15、种适合中到重载加工。通用型刀具夹头一个非常重要的优势是具有良好的减振性,可以提高刀具使用寿命和工件表面加工质量,其价格与大多数高端套筒式刀具夹持系统不相上下。这种刀具夹头也是利用与液压式夹头类似的膨胀技术来夹紧刀具的,只不过其膨胀是通过机械作用而不是通过液体介质来实现的。因此,这种夹持系统可为用户提供良好的减振性和较高的径跳精度(在夹头表面测量小于0.005mm)。与套筒式刀具夹头相比,通用型刀具夹头的其他特点包括:能将夹头拉紧到硬停位置(无需使用扭矩扳手);可对圆形刀具的整个柄部进行牢固而安全的夹紧(套筒式刀具夹头在顶部附近夹紧力较大,而在夹紧孔的底部夹紧力较小);通过使用标准的中间套,可实
16、现柔性夹紧;通过使用一个内部长度调节螺纹,可实现非常精确的轴向长度调整。2.1.4热装式刀具夹头热装式刀具夹头是基于热胀冷缩原理,采用感应技术对夹头进行加热。通过一个感应线圈(有些加热装置采用高频线圈)对夹头上刀具需要插入的部位进行精确加热,将刀具插入后,通过冷却套对夹头进行冷却,刀具柄部周围的夹头部位遇冷收缩,即可将刀具夹紧,并提供能够承受高扭矩的牢固夹持力。热装式刀具夹头具有许多优点,主要包括高径跳精度(小于0.003mm)、高传动扭矩和比较小巧的外形设计。在减振性能上,热装式夹头则要逊于液压式夹头和多边夹紧式夹头。总之,哪种刀具夹持系统最好?对于这个问题无法给出一个普遍适用的答案,因为这
17、取决于用户的特定加工用途。在选择刀具夹头时,一个基本要求是必须了解夹头的静态和动态性能,并根据这些性能来确定夹头的安全性和有效的切削参数。对各种不同种类的刀具夹头进行比较是非常困难的,因为它们在工作原理、结构设计和尺寸规格上各有千秋。只有在同时考虑某一特定加工要求时,才有可能对各种刀具夹头的优劣作出判断。刚性非常好的刀具夹头并不一定适合每一种加工;而最适合高速切削的刀具夹头也可能无法提供某些其他加工所需要的价值。振动切削的实质是在切削过程中使刀具或工件产生某种有规律的、可控的振动,使切削速度(或进给量、切削深度)按某种规律变化,从而改善切削状态,提高工件表面质量。 振动切削通过改变刀具与工件之
18、间的空间时间存在条件,从而改变切削加工机理,达到降低切削力和切削热、提高加工质量和加工效率的目的。振动切削是一种脉冲切削,切削时间短,瞬时切入切出,切削时工件还来不及振动,刀具即已离开工件。根据动态切削理论和冲量平衡理论,采用振动切削时切削温度低,工件表面质量好。在振动切削过程中,由于刀具周期性地接触和脱离工件,其运动速度的大小和方向不断改变。振动切削引起刀具速度变化和加速度的产生,使加工精度和表面质量明显提高。振动切削的特点使其在改善零件加工表面完整性方面独具优势。第三章振动切削改善零件加工表面完整性的优势3.1降低切削力和切削温度 振动切削时,刀具与工件间相对运动速度的大小和方向均产生周期
19、性变化,被加工材料的弹塑性变形和刀具各接触表面的摩擦系数都较小,且切削力和切削热均以脉冲形式出现,使切削力和切削温度的平均值大幅度下降(切削力仅为普通切削时的1/21/10,切屑的平均温度仅40左右),从而改善了切削条件,提高了工件加工质量和刀具使用寿命,减小了切削力引起的变形和切削温度引起的表面热损伤、表面热应力及工件热变形,尤其为需要热处理的零件减小热处理变形及裂纹创造了十分有利的条件,容易实现高精密加工。 3.2表面粗糙度小、加工精度高 振动切削破坏了积屑瘤的产生条件,同时由于切削力小、切削温度低及工件的刚性化效果,使加工表面粗糙度减小、几何精度提高。在振动切削中,虽然刀刃振动,但在刀刃
20、与工件接触并产生切屑的各个瞬间,刀刃所处位置是保持不变的。由于工件与刀具在切削过程中的位置不随时间变化,从而提高了加工精度。 3.3刀具使用寿命长 振动切削时,由于切削力小、切削温度低、冷却充分,切屑的折断和排出都比较容易,可明显提高刀具使用寿命。如振动参数选择适当,一般可使刀具寿命延长几倍至几十倍,对难加工材料和难加工工序应用效果更好。用硬质合金刀具对不锈钢进行超声振动切削试验证明,刀具使用寿命比普通切削方式提高20倍。刀具寿命的延长不仅可节约刀具材料,减少辅助时间,降低加工成本,提高生产效率,而且有利于保证加工质量。 3.4切削液使用效果好 采用普通切削时,切屑总是压在刀具前刀面上形成一个
21、高温高压区,切削液难以进入切削区,只能在刀具外围起间接冷却作用;采用振动切削时,由于切削为断续形式,当刀具与工件分离时,切削液从周围进入切削区,对刀尖进行充分冷却和润滑。特别在超声振动切削时,由于超声振动形成的空化作用,一方面可使切削液均匀乳化,形成均匀一致的乳化液微粒;另一方面切削液更容易渗入材料的裂纹内,可进一步提高切削液使用效果,改善排屑条件。 3.5已加工表面的耐磨性、耐腐蚀性提高 振动切削时,刀具按正弦规律振动,在已加工表面形成细小刀痕,类似二次再加工时形成的花格式网状花纹。大量花纹均匀密布在零件工作表面上,使零件工作时易形成较厚油膜,可提高滑动摩擦的耐磨性。振动切削的残余应力很小,
22、加工变质层较浅,只在刃口附近有很小加工变形,工作表面金相组织变化很小,与材料内部金相组织几乎相当,因此提高了工件表面耐腐蚀性。切削试验证明,振动切削工件表面的耐磨性及耐腐蚀性接近于磨削加工表面。寿命的延第四章磨削的表面质量4.1用砂带磨削AZ31B镁合金板材试件,其表面的磨削纹路相当清晰而且基本完整,没有粘附物,砂带在工件表面耕犁出沟痕,沟痕两边的金属滑移隆起突出,而且被推挤的金属明显产生了滑移,表面质量良好。4.2分别用正交实验和单因素实验对砂带磨削AZ31B的表面粗糙度进行研究,对粗糙度影响最大的是砂带粒度,其次为砂带速度、工件进给速度、接触压力。在相同的条件下,随粒度变细、粗糙度降低;砂
23、带线速度增大,粗糙度降低;工件进给速度对表面粗糙度有一定影响,速度减小,粗糙度降低;反之增加;接触压力减小,砂带磨削的粗糙度变小。4.3粗粒度砂带磨削AZ31B板材时随着磨削深度增加,残余压应力不断增大。当磨削深度达到较大时,残余应力却减小。细粒度砂带磨削AZ31B时随着磨削深度增加,残余压应力不断增大,同时由于粒度变细,其残余应力值较粗粒度砂带磨削AZ31B板材时要小得多,同时它并不存在粗粒度砂带磨削AZ31B板材在磨削深度增加后,残余应力变小的情况。4.4粗粒度砂带磨削AZ31B板材时随着磨削深度增加,硬度值也不断增大。第五章加工后表面层的状态表面材质和表面变质层分析;表面应力状态分析;表
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 轴类工件的质量分析 数控专业毕业论文 工件 质量 分析 数控 专业 毕业论文
链接地址:https://www.31ppt.com/p-2947068.html