带钢卷曲机纠偏液压伺服控制系统设计.doc
《带钢卷曲机纠偏液压伺服控制系统设计.doc》由会员分享,可在线阅读,更多相关《带钢卷曲机纠偏液压伺服控制系统设计.doc(33页珍藏版)》请在三一办公上搜索。
1、目 录1 绪论21.1 概述21.1.1 研究背景21.1.2 研究现状31.1.3 发展方向61.2 纠偏电液伺服控制系统的特点和构成61.3 发展趋势72 卷取机纠偏控制系统设计82.1 卷取机工作原理82.1.1 卷取机的应用82.1.2 工作方式分析9图2.1卷取机简图102.2 带钢纠偏控制系统原理102.2.1 带钢纠偏控制系统的介绍102.2.2 带钢纠偏控制系统工作原理112.3 控制系统设计112.3.1 控制对象的参数112.3.2 控制系统设计方案122.3.3 纠偏液压站原理图设计132.4 系统元件设计选型142.4.1 光电传感器设计143 元件的动力学分析和主要参
2、数的确定183.1 电液伺服阀简介183.2 系统技术参数计算183.3 初选系统压力193.4 对称液压缸的主要参数193.5 计算对称液压缸的工作压力、流量和功率213.5.1 计算对称液压缸的工作压力213.5.2 对称液压缸工作所需的流量223.5.3 计算对称液压缸的输出功率223.6 液压控制系统动力元件参数的确定223.6.1 确定动力元件(伺服阀)参数223.6.2 动力元件(伺服阀)的选择233.6.3 液压泵及电机的选型233.6.4 液压阀的选型243.7 液压辅件的设计计算与选型253.7.1 油箱的设计253.7.2 阀块的设计263.7.3 管道尺寸的确定273.7
3、.4 其它元件的选型293.7.5 液压油的选用29参考文献311 绪论1.1 概述电液伺服阀是闭环控制系统中最重要的一种伺服控制元件,它能将微弱的电信号转换成大功率的液压信号(流量和压力)。用它作转换元件组成的闭环系统称为电液伺服系统。电液伺服系统用电信号作为控制信号和反馈信号,灵活、快速、方便;用液压元件作执行机构,重量轻、惯量小、响应快、精度高。对整个系统来说,电液伺服阀是信号转换和功率放大元件;对系统中的液压执行机构来说,电液伺服阀是控制元件;阀本身也是个多级放大的闭环电液伺服系统,提高了伺服阀的控制性能。1.1.1 研究背景液压控制技术的历史最早可以追溯到公元前240年,一位古埃及人
4、发明的液压伺服机构水钟。而液压控制技术的快速发展则是在18世纪欧洲工业革命时期,在此期间,许多非常实用的发明涌现出来,多种液压机械装置特别是液压阀得到开发和利用,使液压技术的影响力大增。18世纪出现了泵、水压机及水压缸等。19世纪初液压技术取得了一些重大的进展,其中包括采用油作为工作流体及首次用电来驱动方向控制阀等。第二次世界大战期间及战后,电液技术的发展加快。出现了两级电液伺服阀、喷嘴挡板元件以及反馈装置等。20世纪5060年代则是电液元件和技术发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。这些应用最初包括雷达驱动、制导平台驱动及导弹发射架控制等,后来又扩展
5、到导弹的飞行控制、雷达天线的定位、飞机飞行控制系统的增强稳定性、雷达磁控管腔的动态调节以及飞行器的推力矢量控制等。电液伺服驱动器也被用于空间运载火箭的导航和控制。电液控制技术在非军事工业上的应用也越来越多,最主要的是机床工业。在早些时候,数控机床的工作台定位伺服装置中多采用电液系统(通常是液压伺服马达)来代替人工操作,其次是工程机械。在以后的几十年中,电液控制技术的工业应用又进一步扩展到工业机器人控制、塑料加工、地质和矿藏探测、燃气或蒸汽涡轮控制及可移动设备的自动化等领域。电液比例控制技术及比例阀在20世纪60年代末70年代初出现。70年代,随着集成电路的问世及其后微处理器的诞生,基于集成电路
6、的控制电子器件和装置广泛应用于电液控制技术领域。现代飞机上的操纵系统。如驼机、助力器、人感系统,发动机与电源系统的恒速与恒频调节,火力系统中的雷达与炮塔的跟踪控制等大都采用了电液伺服控制系统。飞行器的地面模拟设备,包括飞行模拟台、负载模拟器大功率模拟振动台、大功率材料实验加载等大多采用了电液控制,因此电液伺服控制的发展关系到航空与宇航事业的发展,在其他的国防工业中如机器人也大量使用了电液控制系统。1.1.2 研究现状群控系统(DNC)和柔性制造系统(FMS)等新工艺装备的使用,计算机辅助设计(CAD)和计算机辅助测试(CAT)的广泛应用,为我们进一步简化伺服阀结构,完善设计,降低工艺制造成本和
7、管理费用,提高产品性能,稳定产品质量,增加产品可靠性和延长使用寿命创造了极其有利的条件。1、伺服阀的结构改进(1) 在电液伺服阀的部分结构上,主要从余度技术、结构优化和材料的更替等方面进行改造,以提高相关性能。采用三余度技术的电液伺服系统将伺服阀的力矩马达、喷嘴挡板阀、系统的反馈元件等做成一式三份,若伺服阀线圈有一路断开,而系统仍能够正常工作,且有系统动态品质性能基本不变,从而提高了伺服作动系统的可靠性和容错能力。在结构的改进上, 针对阀出现的故障提出改进措施,进行结构优化,以满足其相关性能的要求。从材料方面考虑,阀的某些元件采用了强度、塑性、韧性、硬度等机械性能优良的材料,既可以减少故障,又
8、让阀具备良好的动态性能。(2) 从阀芯和阀套磨配加工工艺的改进上,采用不同的磨配原理,如磁力研磨法等原理来提高阀的工作性能。阀芯和阀套组成的滑阀副是伺服阀的核心,阀套窗口棱边的几何精度决定了阀的工作性能。在阀芯加工最后磨配端面时,不能直接获得尖锐的棱边,而是在棱边处产生“毛刺”,然后采取措施加以去除。上海交大的陈鹏研制了智能化、全自动的伺服阀配磨系统,以计算机为核心,能自动测量阀的输出特性,并给出配磨参数, 从而使阀芯、阀套的制造简便、迅速。23 (3) 利用优质材料进行伺服阀装配。由于伺服阀的衔铁组件装配是属薄壁件与细长杆装配,压装力稍大时,易产生使工件变形或装配尺寸压不到位的抱死现象。喷嘴
9、体与对应孔压装轴向压装力大,喷嘴体常出现打压渗漏油、压力窜动、跳跃现象。FA表面改质剂不含金属成分及固体润滑剂、树酯等,使用后没有凝固物及杂质产生,与矿物油、液压油等是相溶的。还有金属清洁与去污特性。所以可以改善润滑条件,解决压装中的难点。42、测量和测试设备技术CAT在对液压伺服阀的静、动态特性进行试验测量时,由于测量仪器本身的振动、热噪声和外界的高频随机干扰使被采集的信号中混有相当成分的高频噪声,使信号特征不能真实反映伺服阀实际性能。因此研制对电液伺服阀进行高精度、高可靠性而易于操作的计算机辅助实时测试设备技术非常必要,为电液伺服控制系统的设计或调整,提供准确可靠的伺服阀实际特性依据。(1
10、) 有关静态特性的测试技术-测频/测周法从简化测试系统,方便操作方面,对电液伺服阀的额定流量(大流量)和泄漏流量(小流量)的测试,将测频法(对大流量的测试)与测周法(对小流量的测试)结合起来,进行宽范围的流量测试。由于光栅传感器采用脉冲量,分辨率高、抗干扰能力强,也提高了系统的测试精度,曾良才等人5一套用光栅传感器测量流量的装置,实现了静态特性的流量测试。(2) 由于在动态测试中要求测试系统硬件(如传感器、放大器等)对信号的响应速度快,对信号的发生和采集有同步要求,因而伺服阀的动态性能测试是伺服阀特性测试中的难点。以性能先进的VXI总线仪器为主要测试设备组成电液伺服阀动态特性测试系统,具有高速
11、、高精度、易组建,易扩展,易更新换代等特点。(3) 电液伺服阀综合性能的测试技术利用计算机和相关软件建立的液压元件特性测试系统,实现了电液伺服阀动、静态特性的自动测试。采用虚拟仪器技术VICAT系统,产生低频的三角波、正弦波、锯齿波等用于静态特性实验需要,产生随机信号、正弦扫频信号用于动态特性实验需要;两路模拟量输出和四路模拟量输入等接口,对提高测试精度、减少测试时间、减轻实验人员负担无疑起到了巨大的作用。3、 动态性能研究在电液伺服阀动态性能理论分析中, 通过分析伺服阀结构原理,辨识其非线性数学模型,再进行仿真研究,以证明动态数学模型的正确性,为电液伺服系统的设计、控制策略的研究、电液伺服阀
12、的工作性能认知提供研究的平台。采用不同的输入信号(正弦、脉冲等)对电液伺服阀进行试验,求出其动态数学模型。利用多目标优化理论,建立统一的目标函数,然后运用优化算法对模型进行优化,获得改善阀动态性能的一组结构参数,从而达到改善电液伺服阀动态性能的目的。影响系统稳定性的研究,主要从减小阀分辨率误差以及系统的频带等因素进行,王向周等对三级电液伺服阀加入PD校正环节展宽了频带和减小了先导二级伺服阀的阻尼系数,有利于三级阀系统的稳定。4、故障检测技术液压伺服阀具有时变、非线性、液固耦合等特点,由于设计参数、制造工艺、工作条件和环境的影响,往往会引起堵塞、磨损、疲劳、气蚀、老化、泄漏等多种形式的失效,使液
13、压控制系统不能继续正常工作。一般运用BP神经网络、专家系统等智能方法对电液伺服阀进行故障诊断和模式识别。5、新型电液伺服阀的研制近年来,随着微型计算机的广泛使用,新材料的应用,新型伺服阀的研制得到了相当大的进展。以适应新的要求,例如高压、大流量、高频响、高低温环境适应性、抗干扰、抗油液污染、使用方便和成本低廉等等。(1) 新材料、新技术、新工艺的应用以超磁致伸缩材料(GMM) 和电致伸缩材料(PMN)等为转换器的电液伺服阀,具有高频响,高精度等优点,使液压伺服控制系统的频宽跃上了一个新的台阶。国外在20世纪90年代初已开发了直接驱动式电液伺服阀,作为双喷嘴挡板式电液伺服阀的补充和发展。国内姚建
14、庚等于2000年成功地开发出了一种抗污染能力强、动态指标高的直动式电液伺服阀。利用直线力马达直接驱动滑阀工作,从而提高了电液伺服阀的抗污染能力,是传统的喷嘴挡板式电液伺服阀的补充和发展。(2) 模拟控制方式向数字控制方式的转变。电液数字控制的实现方法一般有两种,其一为采用传统的模拟式控制元件,通过D/A转换实现其数字控制。其二为直接数字控制,它是采用步进电机作为电-机械转换元件,将输入信号转换为与步数成比例的阀输出信号,这类阀具有重复精度高、无滞环等优点。1.1.3 发展方向综上所述,为适应液压伺服系统向高性能、高精度和自动化方向发展需要,伺服阀主要发展方向是:1、标准化目前,国内在研究、生产
15、和使用电液伺服阀方面虽然已初具规模,型号品种也基本相当于国外大部分产品,但由于各自为政、力量分散,标准不很规范,十分不利于伺服阀的进一步发展。因此,着重解决标准化问题已成当务之急。2、虚拟化利用CAD技术全面支持伺服阀从概念设计、外观设计、性能设计、可靠性设计到零部件详细设计的全过程,并把计算机辅助设计(CAD)、计算机辅助分析(CAE)、计算机辅助工艺规划(CAPP)、计算机辅助检验(CAI)、计算机辅助测试(CAT) 和现代管理系统集成在一起,建立计算机制造系统(CIMS)使设计与制造技术有一个突破性的发展。3、智能化发展内藏式传感器和带有计算机、自我管理机能(故障诊断、故障排除)的智能化
16、伺服阀,进一步开发故障诊断专家系统通用工具软件,实现自动测量和诊断。还应开发自补偿系统,包括自调整、自润滑、自校正,这是液压行业努力的方向。4、数字化电子技术与液压技术的结合的一个方向。通过把电子控制装置安装于伺服阀内或改变阀的结构等方法,形成了种类众多的数字产品。阀的性能由软件控制,可通过改变程序,方便地改变设计方案、实现数字化补偿等多种功能。5、微型化随着液压技术的进步及竞争的加剧,微型伺服阀的技术以体积小、重量轻、单位功率大等优点而越来越受到重视。6、绿色化 减少能耗、泄漏控制、污染控制。将发展降低内耗和节流损失技术以及无泄漏元件,如实现无管连接,研制新型密封等;发展耐污染技术和新的污染
17、检测方法,对污染进行在线测量;可采用生物降解迅速的压力液体,如菜油基和合成脂基的传动用介质将得到广泛应用,减少漏油对环境危害,适应环境保护(降低噪声和振动、无泄漏)。1.2 纠偏电液伺服控制系统的特点和构成电液伺服控制系统特点:均为闭环系统;输出为位置、速度、力等各种物理量;控制元件为伺服阀(零遮盖、死区极小、滞环小、动态响应高、清洁度要求高);控制精度高;响应速度快;用于高性能场合。此系统的一般构成如图1.1所示。图1.1 电液伺服系统的一般构成1.3 发展趋势电液伺服控制已经开始向数字化发展,液压技术同电子技术、控制技术的结合日益紧密,电液元件和系统的性能有了进一步的提高。电液伺服控制将在
18、电子设备、控制策略、软件和材料方面取得更大的突破,主要包括以下几个方面。(1)与电子技术、计算机技术融为一体。随着电子组件系统的集成,相应的电子组件接口和现场总线技术开始应用于电液系统的控制中,从而实现高水平的信息系统,该系统简化了控制环节、易于维护,提高液压系统的可控性能和诊断性能。(2)更加注重节能增效。负荷传感系统和变频技术等新技术的应用将使效率大大提高。(3)新型电液元件和一体化敏感元件将得到广泛研究和应用,如具有耐污染、高精度、高频响的直动型电液控制阀,液压变换器及电子油泵等的研究。(4)计算机技术将广泛应用于电液控制系统的设计、建模、仿真试验和控制中。2 卷取机纠偏控制系统设计2.
19、1 卷取机工作原理卷取机是将热轧或冷轧钢材卷取成卷筒状的轧钢车间辅助设备,在热带钢连轧机(热连轧机组)、冷带钢连轧机和线材轧机上布置在成品机座之后;在单机座可逆冷带轧机上则安装在轧机的前后。此外,它也安设在连续酸洗机组、纵剪、退火、涂层等各种精整机组中。冷、热带钢、线材由于产品断面形状的特点,有可能在轧制后立即用卷取机将钢材弯曲成卷,从而为增大原材料重量、提高轧制速度、减小轧件头、尾温差提供了有力的条件,由此导致了产品产量与质量的提高;此外,成卷的轧材便于运送,这是各种形式卷取机的共同特点和作用。2.1.1 卷取机的应用卷取机在很多行业都有应用。卷取机是将产品卷成卷的机械设备。就复杂程度而言,
20、冶金行业的钢板卷取机具有代表性。卷取机驱动来自电力、流体等。卷取机一般构成有核心设备卷筒(卷轴)、辅助卷取设备(辅助成型设备)助卷辊(成形辊)等。在产品卷取过程中,产品主要在卷轴上成型,卷轴一般由电机拖动,辅助卷取设备助卷辊一般采用电机拖动进行转动,流体液压缸驱动助卷辊移动,以帮助顺利成卷。卷取机主要用于将长轧件卷绕成盘材或板卷。在现代化的冷轧带钢车间里,卷取机还广泛用于剪切、酸洗、修磨后抛光热处理、镀锡和镀锌等机组中。由于带钢生产与线材生产、冷带生产与热带生产间工艺上的区别,卷取机尚有各自的特点和功用,从而导致了它们结构上的差异。卷取机的类型很多,按其用途和构造可分为三种型式:1)、带张力卷
21、筒的卷取机通常是在冷状态有张力的条件下卷取钢板或带钢;2)、辊式卷取机用于热卷、冷卷钢板和带钢;3)、线材和小型型钢卷取机2.1.2 工作方式分析带张力卷筒的卷取机应用于可逆式或不可逆式冷轧钢板或带钢轧制线上。这种卷取机不但用于卷取(展开)轧件,同时还使轧件产生张力,这是为了使轧制过程保持稳定,使板卷卷得更紧,并使轧件在喂入轧辊和从轧辊中轧出时有正确的方向。在轧制过程中,一般需要保持有前张力和后张力。依靠这些张力,就可以降低轧制时作用在轧辊上的压力,并减少带钢翘曲现象,有利于提高带钢表面质量。在单机座可逆冷轧机上,轧机前后都装有带张力卷筒的卷取机,它们交替地成为主动的或从动的;即一个卷取而另一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 带钢 卷曲 纠偏 液压 伺服 控制系统 设计
链接地址:https://www.31ppt.com/p-2940960.html