合成氨脱硫工艺设计.doc
《合成氨脱硫工艺设计.doc》由会员分享,可在线阅读,更多相关《合成氨脱硫工艺设计.doc(36页珍藏版)》请在三一办公上搜索。
1、1.5万吨/年合成氨脱硫工艺设计目录1总论11.1概述11.2文献综述21.2.1合成氨原料气净化的现状21.2.2改良ADA的简述21.2.3 ADA的理化性质31.2.4 ADA脱硫的优缺点31.2.4.1优点31.2.4.2缺点32 生产流程或生产方案的确定33 生产流程说明43.1反应机理43.2主要操作条件53.2.1溶液组分53.2.1.1 碱度53.2.1.2 NaVO3含量53.2.1.3ADA浓度53.2.2温度对ADA的影响53.2.3 CO2的影响63.2.4溶液PH的影响73.3 工艺流程73.4主要设备介绍83.4.1填料塔83.4.2 氧化槽83.4.3 硫泡沫槽9
2、3.4.4 过滤器93.4.5 熔硫釜104 工艺计算书104.1原始数据104.1.1焦炉煤气组分104.1.2脱硫液组分104.1.3设计工艺参数104.2物料衡算124.2.1 H2S脱除124.2.2溶液循环量134.2.3生成Na2S2O3消耗H2S的量134.2.4 Na2S2O3生成量134.2.5理论硫回收量134.2.6理论硫回收率134.2.7生成Na2S2O3消耗纯碱的量134.2.8硫泡沫生成量134.2.9入熔硫釜硫膏量134.2.10回收率144.3热量衡算144.3.1冷却塔热量衡算144.3.1.1冷却塔热负荷144.3.1.2冷却水消耗量154.3.2.1硫泡
3、沫槽热负荷154.3.2.2蒸汽消耗量154.3.3.1熔硫釜热负荷154.3.3.2 蒸汽消耗量165 主要设备的工艺计算和设备选型165.1主要设备的工艺尺寸165.1.1.1 塔径165.1.1.2填料层高度计算175.1.1.3 压降的计算185.1.2.1 槽体195.1.2.2 喷射器205.2辅助设备的选型226 设备稳定性及机械强度校核计算236.1壁厚的计算236.2 机械强度的校核246.2.2.1风载荷的计算266.2.2.2 风弯矩的计算277 设计体会与收获288 参考文献299 附录3010 附图341总论1.1概述我国合成氨工业的生产始于20世纪50年代,但生产规
4、模都很小,合成氨单系列装置的生产能力最大仅为4万吨/年,氨加工产品主要为碳酸氢铵,产量满足不了市场的需求。为了满足市场快速增长的需求,70年代,我国建设了一批中型氮肥生产装置,合成氨单系列装置的生产能力达到6-12万吨/年,主要氨加工产品为尿素或硝酸铵,大部分装置采用我国开发的以无烟煤为原料的固定层气化技术。随着现代农业的快速发展,高浓度化肥的市场需求不断增加,为了满足需求,增加生产能力,我国先后引进了30套以油、天然气和煤为原料的30万吨/年合成氨装置。除此之外,我国还自行研究设计制造了以轻油为原料的生产能力为30万吨/年的合成氨生产装置。随着合成氨工业的发展,氨的生产要求越来越严格,比如氨
5、原料的提取,氨原料气的净化,氨后续工艺的要求等等。各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。在此我们主要研究合成氨原料气的脱硫。合成氨原料气中的硫是以不同形式的硫化物存在的,其中大部分是以硫化氢形式存在的无机硫化物,还有少量的有机硫化物。具体来
6、说作为原料气的半水煤气中都含有一定数量的硫化氢和有机硫化物(主要有羰基硫、二硫化碳、硫醇、硫醚等),能导致甲醇、合成氨生产中催化剂中毒,增加液态溶剂的黏度,腐蚀、堵塞设备和管道,影响产品质量。硫化物对合成氨的生产是十分有害的,燃烧物和工业装置排放的气体进入大气,造成环境污染,危害人体健康。硫也是工业生产的一种重要原料。因此为了保持人们优良的生存环境和提高企业最终产品质量,对半水煤气进行脱硫回收是非常必要的1.2文献综述1.2.1合成氨原料气净化的现状合成氨原料气(半水煤气)的净化就是清除原料气中对合成氨无用或有害的物质的过程,原料气的净化大致可以分为“热法净化”和“冷法净化”两种类型,原料气的
7、净化有脱硫,脱碳,铜洗和甲烷化除杂质等,在此进行的气体净化主要是半水煤气的脱硫的净化。煤气的脱硫方法从总体上来分有两种:热煤气脱硫和冷煤气脱硫。在我国,热煤气脱硫现在仍处于试验研究阶段,还有待于进一步完善,而冷煤气脱硫是比较成熟的技术,其脱硫方法也很多。冷煤气脱硫大体上可分为干法脱硫和湿法脱硫两种方法,干法脱硫以氧化铁法和活性炭法应用较广,而湿法脱硫以砷碱法、ADA、改良ADA和栲胶法颇具代表性。煤气干法脱硫技术应用较早,最早应用于煤气的干法脱硫技术是以沼铁矿为脱硫剂的氧化铁脱硫技术,之后,随着煤气脱硫活性炭的研究成功及其生产成本的相对降低,活性炭脱硫技术也开始被广泛应用。干法脱硫既可以脱除无
8、机硫,又可以脱除有机硫,而且能脱至极精细的程度,但脱硫剂再生较困难,需周期性生产,设备庞大,不宜用于含硫较高的煤气,一般与湿法脱硫相配合,作为第二级脱硫使用。湿法脱硫可以处理含硫量高的煤气,脱硫剂是便于输送的液体物料,可以再生,且可以回收有价值的元素硫,从而构成一个连续脱硫循环系统。现在工艺上应用较多的湿法脱硫有氨水催化法、蒽醌二磺酸法(A.D.A法)及有机胺法。其中蒽醌二磺酸法的脱除效率高,应用更为广泛。改良ADA法相比以前合成氨生产中采用毒性很大的三氧化二砷脱硫,它彻底的消除了砷的危害。基于此,在合成氨脱硫工艺的设计中我采用改良ADA法工艺。1.2.2改良ADA的简述ADA 法是英国西北煤
9、公司与克莱顿胺公司共同开发的, 于1959 年在英国建立了第一套处理焦炉气的中间试验装置, 1961 年初用于工业生产。但由于此方法析硫的反应速度慢, 需要庞大的反应槽, 并且为防止HS- 进入再生塔引起副反应, 溶液中HS- 的浓度必须控制在(50 100) 10- 6之间, 溶液的硫容量很低, 因而使ADA 法的应用受到限制。为此, 研究者对ADA 法进行了改进, 在ADA 溶液中添加了适量的偏钒酸钠、酒石酸钾钠。偏钒酸钠在五价钒还原成四价钒的过程中提供氧, 使吸收及再生的反应速度大大加快, 提高了溶液的硫容量, 使反应槽容积和溶液循环量大大减少。酒石酸钾钠的作用是防止钒形成“钒- 氧-
10、硫”态复合物, 沉淀析出, 导致脱硫液活性下降, 这样使ADA 法脱硫工艺更趋于完善, 从而提高气体的净化度和硫的回收率, 经改进的ADA 法被称为改良ADA 法。1.2.3 ADA的理化性质ADA是蒽醌二磺酸(Anthraqinone Disulphonic Acid)的缩写。作为染料中间体,它有几种主要的异构体。ADA的这几种异构体中,在产品中一般含量较高的是1.52ADA , 1.82ADA , 2.62ADA , 2.72ADA。其中2.62ADA 与2.72ADA 的脱硫活性较好, 而2.72ADA 又优于2.62ADA , 特别在溶解度上,2.72ADA 在100 克水中的溶解度为
11、: 20 时3015 g, 100 时10 g; 2.62ADA 在100 克水中的溶解度3 g (20 )。两者在水中溶解度相差约一个数量级, 实际溶液中由于H2S 反应不彻底和伴生的副反应, 溶液中存在Na2SO4、NaCNS和Na2S2O3 等副产品, 这些副反应产物随着脱硫生产操作的运行, 在脱硫液中逐渐积累, 当达到相当含量时, 会使2.62ADA 和2.72ADA 溶解度快速下降, 影响脱硫效果, 而且析出的ADA 伴随硫磺夹带出脱硫系统, 增加ADA 消耗。1.2.4 ADA脱硫的优缺点1.2.4.1优点(1) ADA作为染料中间体,它有多种主要的异构体。ADA的这几种异构体中,
12、在产品中一般含量较高,便于提取。(2) 脱硫溶液的活性好、性能稳定、腐蚀性小。(3) 脱硫效率很高,所析出的硫容易浮选和分离。(4) ADA脱硫整个脱硫和再生过程为连续在线过程,脱硫与再生同时进行,不需要设置备用脱硫塔。(5) 煤气脱硫净化程度可以根据企业需要,通过调整溶液配比调整,适时加以控制,净化后煤气中H2S含量稳定。1.2.4.2缺点蒽醌二磺酸法脱硫在生产过程中存在一点问题。反应速度太慢,需时30min以上,这就需要庞大的反应槽并使副反应加重,同时此法在操作中易发生堵塞,而且药品价格有些昂贵。2 生产流程或生产方案的确定焦炉煤气的净化主要是要脱除煤气中的H2S,脱硫的方法有两种:干法脱
13、硫、湿法脱硫。干法脱硫既可以脱除无机硫,又可以脱除有机硫,而且能脱至极精细的程度,但脱硫剂再生较困难,需周期性生产,设备庞大,不宜用于含硫较高的煤气,一般与湿法脱硫相配合,作为第二级脱硫使用。湿法脱硫可以处理含硫量高的煤气,脱硫剂是便于输送的液体物料,可以再生,且可以回收有价值的元素硫,从而构成一个连续脱硫循环系统。现在工艺上应用较多的湿法脱硫有氨水催化法、改良蒽醌二磺酸法(A.D.A法)及有机胺法。其中改良蒽醌二磺酸法的脱除效率高,应用更为广泛。3 生产流程说明3.1反应机理改良ADA 的脱硫反应历程:最新的研究表明, 改良ADA 法反应历程如下。碱液吸收硫化氢2Na2CO3+ 2H2S=
14、2NaHS+ 2NaHCO 3 (1) 氧化析硫 2NaHS+ 4N aVO 3+ H2O = Na2V4O 9+ 4NaOH+ 2S (2)焦钒酸钠被氧化Na2V4O9+ 2H2O2+ 2NaOH+ ADA (氧化态) = 4NaVO3+ 3H2O + ADA (还原态) (3) 碱液再生2NaOH+ 2NaHCO 3= 2Na2CO 3+ 2H2O (4)ADA 再生ADA (还原态) + O 2= ADA (氧化态) + H2O2 (5)当气体中有氧、二氧化碳、氰化氢存在时还产生如下副反应:2NaHS+2O2=Na2S2O3+H2ONa2CO3+CO2+H2O=2NaHCO3Na2CO3
15、+2HCN=2NaCN+H2O+CO2NaCN+S=NaCNS2NaCNS+5O2=Na2SO4+2CO+SO2+N2从上述反应历程来看, 要使H2S 较彻底地还原为单质硫, 偏钒酸钠(NaVO 3)是否足量是个重要的因素, 而要使偏钒酸钠浓度高, 焦钒酸钠较完全转化为偏钒酸钠是反应的关键。而在这一反应中H2O2 浓度起着决定性的作用, 如H2O2 浓度低, 就容易造成焦钒酸钠转化不彻底, 使溶液中有效偏钒酸钠浓度降低, 从而使溶液中HS- 含量上升, Na2S2O 3、NaCNS 等副产物增加, 加大了碱和钒的消耗, 而且反应所需的H2O2 是在ADA再生过程中生成的反应式(5) , 故操作
16、中一定要保持ADA 有一定浓度和足够的再生空气。二者不足均会使溶液中氧 化态的ADA 浓度降低,H2O2 的生成量减少, 最终造成物耗上升。 3.2主要操作条件3.2.1溶液组分溶液的主要组分是碱度、NaVO3、ADA。3.2.1.1 碱度溶液的总碱度与其硫容量成线性关系,因而提高总碱度是提高硫容量的有效途径,一般处理低硫原料气时,采用的溶液总碱度为0.4N,而对高硫含量的原料气则采用1N的总碱度。3.2.1.2 NaVO3含量NaVO3的含量取决于脱硫液的操作硫容,即与富液中的HS-浓度符合化学计量关系。应添加的理论浓度可与液相中HS-的摩尔浓度相当,但在配制溶液时往往要过量。从反应机理可知
17、,硫化氢首先被碱液吸收生成硫化物后再与ADA钒酸盐溶液反应3.2.1.3ADA浓度反应式(2)在氧的存在下进行是迅速的,但还原态焦钒酸盐不能为空气直接氧化再生,而必须依赖与反应(2),由ADA将它氧化而恢复活性,因此要求溶液中ADA与偏钒酸钠的化学当量比,按化学反应的当量计溶液中ADA含量必须等于或大于偏钒酸钠含量的1.69倍,工业上实际采用2倍以上。表3是工业上采用的两种溶液组,组成(一)适用于含高硫化氢含量与加压情况下的原料气脱硫,组成(二)适用于含低硫化氢含量与常压情况下的原料气脱硫,但也有使用低浓度的ADA溶液来脱硫。表3工业生产使用的ADA溶液组成溶液类别总碱度NNa2CO3(gL-
18、1)ADA(gL-1)NaKC4H4O6(gL-1)含高硫化氢与加压情况15102含低硫化氢与常压情况0.423513.2.2温度对ADA的影响常温范围内,H2S、CO2脱除率及Na2S2O3生成率与温度关系不敏感。再生温度在45以下,Na2S2O3的生成率很低,超过45时则急剧升高。为了保证主要反应进行所需要的条件,又尽可能的抑制硫代硫酸盐的生成,适宜的吸收温度为2030。同时温度与ADA 的溶解度呈反比关系。据资料介绍从20 上升到100 , 2, 72ADA 在水中的溶解度将下降3 倍以上。这一点容易被人们忽视。由于传统习惯, 一般ADA 和Na2CO3 同时添加,而Na2CO3 的溶解
19、度与温度呈正比关系, 提高温度对Na2CO3 溶解有利, 故在加料时, 采用了蒸汽加热直接搅拌的方法, 这样对Na2CO3 溶解速度提高有利, 但对ADA 的溶解能力起到了很大的抑制作用。从我们溶解釜的情况看, 溶解釜有效容积约为850 L。在加热到近100 时, 经粗略估算, 2.72ADA 能溶解85 kg, 而2.62ADA 约为815 kg, 如我们采用不定期、大剂量添加的方法,则2.62ADA 因达饱和而无法溶解, 造成消耗上升。还有对脱硫液的温度控制, 对ADA 消耗同样很重要。从表1 可以看出, ADA 在有副产物的溶液中溶解度下降很快, 再加上温度的升高使ADA溶解度下降, 双
20、重作用将使ADA 结晶析出。特别是对2.62ADA 多的脱硫剂, 这一现象将更加明显, 加入量再多也无法提起溶液中ADA 浓度。我们曾经使用过某厂的ADA , 在使用中溶液浓度始终达不到要求, 且通过加大ADA 投放量的方法也无法改变这一现状, 通过全面检查我们在回收的硫磺中发现了一层异样物, 经分析ADA达4%。这部分就是ADA 结晶析出物。另外, 氧化还原反应对温度比较敏感, 脱硫液温度升高, 反应速度明显加快, 析硫反应在脱硫塔内快速进行, 将会造成硫堵。温度升高, 还加快了副反应, 见图1。故从溶解度和反应来说,温度过高对消耗下降不利。图1温度对硫代硫酸盐生成的影响3.2.3 CO2的
21、影响当气体中二氧化碳存在时,一部分碳酸钠转化成碳酸氢钠,但碱度对二氧化碳的吸收速度大大慢于对硫化氢的吸收速度,当脱硫塔中吸收的二氧化碳与再生塔中解析的二氧化碳达到平衡时,溶液中碳酸氢钠的含量达到一定的平衡值,此平衡数值与气体中的二氧化碳有关。同时有CO2的存在后会使溶液的PH值下降,使脱硫效率稍有降低。3.2.4溶液PH的影响PH值的适宜为8.5左右,以下是PH值对硫代硫酸钠生成的影响。3.3 工艺流程蒽醌二磺酸钠法可用于常压与加压条件下煤气、焦炉气、天然气等原料气的脱硫。 图2所示是加压条件下蒽醌二磺酸于钠溶液脱出煤气中硫化氢的工艺流程图,操作压力为1.8MPa左右,进口气体中硫化氢含量25
22、 g/m3,出口气体中硫化氢含量小于10m g/m3。煤气进入一个下部为空塔,上部有一段填料结构的脱硫塔,净化的气体经分液罐分离液滴后排出入后工序。由吸收塔出来的溶液进入反应槽中,在此,仅HS离子与NaVO3的反应全部完成,并开始将还原态的钒酸钠用蒽醌二磺酸进行氧化。溶液出反应槽后减压流入再生塔,空气通入再生塔内,仅还原状态的蒽醌二磺酸钠氧化;单体硫磺浮集在氧化塔顶,使其溢流入稠厚桶,经过滤机分离而得到副产硫磺。溶液则由塔上部经液位调节器后进入溶液循环槽,然后用泵将压力升至2.0MP左右,仍送入吸收塔应用。1吸收塔;2分液罐;3再生塔;4液位调节器;5硫泡沫槽;6温水槽; 7反应槽;8循环槽;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 合成氨 脱硫 工艺 设计
链接地址:https://www.31ppt.com/p-2927698.html