WELDOX960高强钢焊接性研究.doc
《WELDOX960高强钢焊接性研究.doc》由会员分享,可在线阅读,更多相关《WELDOX960高强钢焊接性研究.doc(65页珍藏版)》请在三一办公上搜索。
1、材料加工工程毕业论文WELDOX960高强钢焊接性研究所属院系:材料科学与工程专 业:材料加工工程摘 要WELDOX960作为新一代低合金高强钢,具有细晶粒、超洁净度、高均匀性、高强度、高韧性和良好综合性能的新材料,主要应用于矿山机械、桥梁、铁路、汽车起重机等重载领域。本文结合军用车载桥梁的实际生产条件根据“低强匹配”原则选取瑞典生产的ED-FK 1000高强焊丝设计了WELDOX960高强钢的ArCO2混合气体保护焊工艺,在预热75、焊接线能量1.01.2KJ/mm、层间温度8085的条件下进行多层多道焊接。分别对WELDOX960高强钢焊接接头进行拉伸、弯曲、冲击等力学性能试验和斜Y型坡口
2、试验、搭接接头试验及热影响区最高硬度等抗裂性试验研究,并利用光学显微镜和扫描电镜等分析手段对WELDOX960高强钢的焊缝、熔合区和热影响区的微观组织及断口进行分析,研究了预热温度、焊接热输入和后热温度等工艺因素对接头强度、弯曲性能和热影响区冲击韧性的影响,分析了微观组织对接头强韧性的影响以及该钢在实际生产条件下的焊接适应性。测试结果表明在本试验条件下该钢冷裂和热裂敏感性小,接头屈服强度为928.8Mpa,失强率14.2%,达到设计要求;焊接热输入及层间温度对接头性能有重要影响,焊接热输入太小,导致接头冷却速度过快,温度梯度大,淬硬性大,从而使冷裂倾向增大;但热输入太大时又容易使接头内应力叠加
3、增大,半熔化区奥氏体晶粒粗化,降低接头的强度及抗裂性能;微观分析表明,焊缝及热影响区分布的贝氏体和低碳马氏体是接头高强度和高韧性的基本条件,因此要合理控制焊接热输入在1.01.2 KJ/mm范围内,保证焊缝组织为粒状贝氏体和少量的低碳马氏体,从而保证接头的强韧性。关键词 高强钢,焊接接头,力学性能,焊接性,混合气体保护焊 ABSTRACTAs a high strength low and alloyed structural steel, WELDOX960 is characterized by fine grain, super-metallurgical purification an
4、d homogenization, high strength and toughness, and it is widely applied in the field of mine-machine, bridge, railway and mobile crane etc. High-strength MAG-wire ED-FK 1000 is selected as consumed material according to “lower strength match”to be used in mixed gases (Ar+CO2) shielded metal arc weld
5、ing(GMAW). During multiplayer welding, WELDOX960 is welded with welding parameters as follow: preheat temperature is 75,heat input is 1.01.2KJ/mm,Interpass temperature is 8085. Mechanical tests (tensile test, bending test and impact test) and crack tests (Y-groove and CTS cracking test, peak hardnes
6、s of HAZ test) were carried out to study on its weldability; and microstructures of weld metal, fusion zone, HAZ and fractography were investigated by means of light microscopy and SEM; the effect of processing factors and microstructures of welding joint on strength and toughness of welding joint w
7、as analyzed. Experimental results indicated that WELDOX960 has a good capacity of resisting cool cracking and hot cracking with suitable welding parameters. CET is a key factor to the performance of joint. With a small value of CET, the joint will be apt to get cracking due to fast cooling and big t
8、emperature grade while a big value of CET will damage the performance of joint sharply due to coarse grain and welding interstress. Microanalysis indicated that granular bainite and low-carbon martensite were found in weld and HAZ, which contributed to high strength and toughness of joint. So CET mu
9、st be limited in the range of 1.01.2 KJ/mm to make sure that granular bainite and low-carbon martensite be acquired in weld. KEY WORDShigh strength steel, welded joint, mechanical property, weldability, GMW目 录第一章 概述11.1 新一代低合金高强钢的发展概况11.1.1 我国低合金高强钢的发展现状及面临的挑战31.1.2 国外新一代低合金高强钢的发展及使用情况41.2 新一代低合金高强钢
10、的主要特点51.2.1 新一代低合金高强钢的冶金特点51.2.2 新一代低合金高强钢的强化途径61.3 新一代低合金高强钢对焊接材料的要求71.3.1 新一代低合金高强钢的焊接性71.3.2 新一代低合金高强钢对焊接材料的要求81.4 本课题的研究背景及意义91.5 本课题预期达到的目的10第二章 WELDOX960高强钢的生产工艺及性能112.1 WELDOX960高强钢的生产工艺112.1.1 WELDOX960高强钢的轧制工艺122.1.2 WELDOX960高强钢的淬火和退火工艺122.2 WELDOX960高强钢的机械性能152.2.1 WELDOX960高强钢的冶金特点152.2.
11、2 WELDOX960高强钢的机械性能172.3 WELDOX960高强钢的强化机理172.3.1 晶界强化172.3.2 应变强化182.3.3 固溶强化192.3.4 沉淀强化192.3.5 马氏体相变强化202.4 韧化机理202.4.1 金属材料的净化212.4.2 晶粒的细化212.4.3 显微组织的优化212.5 本章小节22第三章 WELDOX960高强钢焊接性研究233.1 WELDOX960高强钢焊接性理论分析233.1.1 碳当量法243.1.2 预热温度Tp的计算253.1.3 热影响区最高硬度HVmax与t8/5的关系263.1.4 焊接工艺参数曲线273.1.5 焊接
12、材料的选择303.1.6 试验设备及仪器313.2 焊接性试验的目的及内容313.3 WELDOX960高强钢抗裂性试验结果及分析323.3.1 斜Y型坡口焊接裂纹试验323.3.2 热影响区最高硬度试验353.3.3 搭接接头焊接裂纹试验383.4 WELDOX960高强钢力学性能试验及结果分析413.4.1 焊接接头抗拉强度试验413.4.2 焊接接头微观组织分析453.4.3 焊接接头弯曲试验463.4.4 焊接接头冲击试验503.5 本章小结55第四章 结论57参 考 文 献58致 谢61第一章 概述1.1新一代低合金高强钢的发展概况随着机械工业生产迅猛发展,在焊接结构日益大型化、轻量
13、化的现代工程机械及冶金矿山机械生产中,为提高机械设备的使用性能,以最大限度地满足各种工程建设的需要,钢材不仅要有良好的综合力学性能,而且要有良好的加工工艺性能(比如焊接性),对于特殊条件下使用的钢种,更要求其具有相应的特殊性能,比如耐高温,耐腐蚀,耐冲击等。因此原来的碳素钢已经不能满足需要,必将有大量的低合金高强度钢被投入使用。低合金高强度钢是指低合金钢中包括C、Si、Mn在内的主要添加元素的含量不超过5%,屈服强度大于600MPa的钢种,是在碳素钢的基础上通过调整碳及合金元素的含量,并辅助一定的热处理工艺实现的。低合金高强钢的主要特点是含碳量低,可焊性好(含碳量一般低于0.45,冷裂敏感指数
14、小于0.3),晶粒细化,屈服强度高,普遍采用Nb、V、Ti等合金元素进行强韧化。大多采用先进的冶炼工艺和形变热处理工艺进行生产1-5。按照低合金高强钢(简称HSLA钢)的屈服强度可以将其大致分为三个等级:A级:s =290-490MPa 热轧、控轧、正火钢B级:s = 490-980MPa 低碳调质钢C级:s = 880-1176MPa中碳调质钢低合金高强钢的发展经历了几个极为重要的时期。20世纪初的低合金高强钢主要用于结构和建筑方面,而且主要是根据屈服强度s进行设计,很少注意钢材的韧性、可成形性和可焊接性;50年代开始大力开发细晶粒化的新材料;70年代以控制轧制技术和钢的微合金化冶金为基础,
15、形成了“现代低合金高强度钢”的新概念;80年代初以来,借助于工艺技术方面的成就开发了适于广泛工业领域和专门领域的品种。在钢的化学成分工艺组织性能的关系中,第一次强调了钢的组织的主导地位,表明低合金高强钢的基础研究已趋于成熟。随着低合金高强钢的不断发展,在高强度、耐高温、耐低温、耐腐蚀等方面满足了焊接结构的要求,并在桥梁、锅炉及压力容器、汽车、舰船、石油管线等领域得到了广泛的应用。低合金高强钢主要是通过调整钢中碳元素和合金元素的质量分数和配以适当的热处理来实现的,当然碳元素和合金元素的增加也会给钢的焊接性带来不利的影响。在低合金高强钢中,随着强度级别的提高,碳元素及合金元素质量分数的增多,势必会
16、引起接头的脆化、软化及裂纹倾向增大。这些焊接性问题的出现,不仅会降低焊接结构安全运行的可靠性,造成焊接结构的早期破坏,而且还会给国家财产和人民生命造成重大损失。为了不断改善低合金结构钢的焊接性,国内从80年代就开始研制并生产焊接性良好的微合金控轧钢和新一代超细晶粒钢,这些新钢种的出现必然会给钢的焊接性带来了重大的变革6。1.1.1我国低合金高强钢的发展现状及面临的挑战在六、七十年代,我国高强度钢的生产几乎处于空白状态,但在国外,其发展和应用已很广泛,而且还有不断增长的趋势。我国在这一领域起步很晚,从7080年代我国控制轧制的基础研究开始进行,在低合金高强钢合金设计中,人们已不再采用以提高钢中碳
17、元素的含量、牺牲塑性来得到更高强度的传统设计方案,新的合金设计是向钢中添加Cr、Ni、V、Ti、Nb、B等少量合金元素,从而提高钢的强度、改善焊接性和耐磨性等力学性能。到目前为止许多低合金高强钢的生产已开始采用此方法,并将成为厚钢板生产的主要方向。对这类钢配套使用的焊接材料的研制成为当前亟待解决的问题之一。由于新一代钢铁材料的晶粒达到超细化,焊接时面临的严重问题是焊缝的强韧化、热影响区晶粒长大等问题。在我国新一代钢铁材料项目中,主要是针对400MPa级和800MPa级超细晶粒钢解决上述焊接性问题,并从焊接材料、焊接方法和焊接工艺等多方面进行综合解决。但是,随着低合金高强钢的广泛应用,尤其是低合
18、金高强钢的焊接,给焊接工作者带来很多困难。为了提高钢材的强度,需要高的含碳量和合金含量,但是随之而来的问题是强度越高,韧性越低,焊接性也越差。国内的研究人员针对该难题做了大量工作,并且也取得了一定的成果。目前国内投入使用的低合金高强钢的强度已经达到600MPa6。发展低合金高强钢是实现我国钢铁工业结构调整的重要部分,也是我国从钢铁大国转变为钢铁强国的关键措施,因此有必要研制和开发既适合焊接又便于热处理的低合金高强钢,以适应不同结构对钢材的需求。我国“新一代低合金高强钢的基础研究”项目已经启动,目标是提高钢材的纯净度、均匀性、超细化组织(力争晶粒尺寸小于1m),使合金钢的强度、韧性比现有钢种提高
19、一倍。此课题的研究将为今后新一代低合金高强钢在我国的深入研究、推广和使用做出一些基础性探讨工作。1.1.2国外新一代低合金高强钢的发展及使用情况国外对低合金高强钢的研究和使用己经很多年了,尤其是超高强结构。最近几十年来,国外特别注重通过冶金的方法从根本上解决钢的焊接性问题,通过冶金措施采用低碳微合金化及控轧控冷等工艺措施生产出了若干种强韧性好、焊接性优良的管线钢、桥梁钢、压力容器用钢等,为焊接用合金结构钢的发展做出了新的贡献。日本首先于1997年投资6000美元启动了“STX-21超级钢铁材料”项目,通过超细化和微合金化使钢铁材料的寿命和性能提高一倍,平均晶粒尺寸从10m降到0.77m6,使普
20、通C-Mn钢的抗拉强度从405MPa 提高到800MPa。瑞典的SSABOXLOSUND公司从90年代开始研制高强钢,到目前为止,已经生产出全世界屈服强度最高的结构钢板WELDOX1100。WELDOX960属于低合金高强结构钢,是SSAB OXELOSUND公司WELDOX系列产品,该钢主要是通过调整钢中碳及合金元素的质量分数并配以适当的热处理来实现强韧性的。作为新一代钢种,WELDOX960高强钢以其优良的性能,如高强度、耐高温、耐低温、耐腐蚀等满足了焊接结构多方面的要求,并在舰船、工程机械、石油管线、锅炉及压力容器、桥梁、汽车、火车、发电设备等领域得到了广泛的应用。低合金高强钢随着性能的
21、不断改善,在许多结构方面的应用已占相当大的比例,特别是海洋用钢、建筑用钢等方面。近几年国外在不同结构上使用低合金高强度钢的比例列于表11中2。表11低合金高强钢在不同结构中所占的比例(%)Tab. 1-1 Percent of HSLA in different fields (%)项 目 欧 洲北 美日 本结构用型钢302010船舶用型钢15302010钢 板 钢2015100钢 筋100510建筑用钢958070海洋用钢板903070海洋用型钢7020101.2新一代低合金高强钢的主要特点新一代低合金高强钢的特点是超细晶粒、超洁净度、高均匀性,其强度和寿命比原同类钢种提高一倍。超细晶粒是指
22、钢材晶粒尺寸达到0.1-10m,超洁净度是指钢中S、P、O、N和H等杂质元素的含量降低到0.005%以下;高均匀性是指钢材的成分、组织和性能的高度均匀,并强调了组织均匀的主导地位3。新一代低合金高强钢主要通过冶金处理和各种强化途径来实现其强韧性。1.2.1新一代低合金高强钢的冶金特点1. 洁净化 钢材的洁净化具有两个含义,一是最大限度地去除钢中S、P、O、N、H(有时包括C)等杂质元素;二是严格控制钢中夹杂物的数量、成分、尺寸、形态及分布。钢的洁净化能够显著提高钢材的强韧性和焊接接头的抗裂性,使钢材的焊接性得到明显提高,当然要求焊缝也必须洁净化。目前大工业生产中钢水的洁净度从普通钢的W(S+P
23、+O+N+H)25010-6降低到经济洁净钢的W(S+P+O+N+H)12010-6。国外一些先进钢厂对S、P、O、H、N的总量已控制在5010-3以下,达到超洁净钢的水平,并且有进一步降低的趋势。2. 细晶化 新一代低合金高强钢的细晶强化是采用多元微合金化和控轧控冷技术较大幅度地细化晶粒来提高钢的强韧性。如70年代生产的性能优良控轧钢CR钢Controlled Rolling),80年代通过对轧制后立即加速冷却所生产的TMCP钢(Thermal-Mechanical Control Process)。其基本思想是根据轧制方法的不同,向钢中加入微量的Ti、Mo、V、B、Re等合金元素中的一种或
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- WELDOX960 高强 焊接 研究
链接地址:https://www.31ppt.com/p-2927294.html