中考数学模拟试题汇编专题39:开放性问题(含答案).doc
《中考数学模拟试题汇编专题39:开放性问题(含答案).doc》由会员分享,可在线阅读,更多相关《中考数学模拟试题汇编专题39:开放性问题(含答案).doc(12页珍藏版)》请在三一办公上搜索。
1、开放性问题一.解答题1.(2016河北石家庄一模)如图,抛物线y=x2+x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BCx轴,垂足为点C(3,0)(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PNx轴,交直线AB于点M,交抛物线于点N设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由【考点】二次函数综合题【专
2、题】压轴题【分析】(1)由题意易求得A与B的坐标,然后有待定系数法,即可求得直线AB的函数关系式;(2)由s=MN=NPMP,即可得s=t2+t+1(t+1),化简即可求得答案;(3)若四边形BCMN为平行四边形,则有MN=BC,即可得方程: t2+t=,解方程即可求得t的值,再分别分析t取何值时四边形BCMN为菱形即可【解答】解:(1)当x=0时,y=1,A(0,1),当x=3时,y=32+3+1=2.5,B(3,2.5),设直线AB的解析式为y=kx+b,则:,解得:,直线AB的解析式为y=x+1;(2)根据题意得:s=MN=NPMP=t2+t+1(t+1)=t2+t(0t3);(3)若四
3、边形BCMN为平行四边形,则有MN=BC,此时,有t2+t=,解得t1=1,t2=2,当t=1或2时,四边形BCMN为平行四边形当t=1时,MP=,NP=4,故MN=NPMP=,又在RtMPC中,MC=,故MN=MC,此时四边形BCMN为菱形,当t=2时,MP=2,NP=,故MN=NPMP=,又在RtMPC中,MC=,故MNMC,此时四边形BCMN不是菱形【点评】此题考查了待定系数法求函数的解析式,线段的长与函数关系式之间的关系,平行四边形以及菱形的性质与判定等知识此题综合性很强,难度较大,解题的关键是数形结合思想的应用2.(2016河北石家庄一模)如图1,一副直角三角板满足AB=BC,AC=
4、DE,ABC=DEF=90EDF=30,【操作1】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q在旋转过程中,如图2,当时,EP与EQ满足怎样的数量关系?并给出证明【操作2】在旋转过程中,如图3,当时EP与EQ满足怎样的数量关系?,并说明理由【总结操作】根据你以上的探究结果,试写出当时,EP与EQ满足的数量关系是什么?其中m的取值范围是什么?(直接写出结论,不必证明)m第2题【考点】相似形综合题【分析】(操作1)连接BE,根据已知条件得到E是AC的中点,根据等腰直角三角形的性质可以证明DE=CE,PBE=C
5、根据等角的余角相等可以证明BEP=CEQ即可得到全等三角形,从而证明结论;(操作2)作EMAB,ENBC于M、N,根据两个角对应相等证明MEPNWQ,发现EP:EQ=EM:EN,再根据等腰直角三角形的性质得到EM:EN=AE:CE;(总结操作)根据(2)中求解的过程,可以直接写出结果;要求m的取值范围,根据交点的位置的限制进行分析【解答】(操作1)EP=EQ,证明:连接BE,根据E是AC的中点和等腰直角三角形的性质,得:BE=CE,PBE=C=45,BEC=FED=90BEP=CEQ,在BEP和CEQ中,BEPCEQ(ASA),EP=EQ;如图2,EP:EQ=EM:EN=AE:CE=1:2,理
6、由是:作EMAB,ENBC于M,N,EMP=ENC,MEP+PEN=PEN+NEF=90,MEP=NEF,MEPNEQ,EP:EQ=EM:EN=AE:CE=1:2;如图3,过E点作EMAB于点M,作ENBC于点N,在四边形PEQB中,B=PEQ=90,EPB+EQB=180,又EPB+MPE=180,MPE=EQN,RtMEPRtNEQ,=,RtAMERtENC,=m=,=1:m=,EP与EQ满足的数量关系式1:m,即EQ=mEP,0m2+,(因为当m2+时,EF和BC变成不相交)【点评】本题考查了相似三角形的性质和判定,全等三角形的性质和判定,主要考查学生运用定理进行推理的能力,证明过程类似
7、3.(2016河大附中一模)(本题满分9分) 如图(1),线段AB=4,以线段AB为直径画O,C为O上的动点,连接OC,过点A作O的切线与BC的延长线交于点D,E为AD的中点,连接CE(1)求证:CE是O的切线;第2题(2)当CE= 时,四边形AOCE为正方形? 当CE= 时,CDE为等边三角形时?答案:4.(2016河大附中一模)(本题满分10分)在ABC中,ACB为锐角,点D为射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90得到AE,连接EC. 问题发现: (1)如果AB=AC,BAC=90,当点D在线段BC上时(不与点B重合),如图1,请你判断线段CE,BD之间的位置关系和数量
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学模拟 试题 汇编 专题 39 开放性 问题 答案
链接地址:https://www.31ppt.com/p-2894780.html