中考数学100份试卷分类汇编:三角形相似.doc
《中考数学100份试卷分类汇编:三角形相似.doc》由会员分享,可在线阅读,更多相关《中考数学100份试卷分类汇编:三角形相似.doc(73页珍藏版)》请在三一办公上搜索。
1、2013中考全国100份试卷分类汇编相似三角形1、(2013昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N下列结论:APEAME;PM+PN=AC;PE2+PF2=PO2;POFBNF;当PMNAMP时,点P是AB的中点其中正确的结论有()A5个B4个C3个D2个考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;正方形的性质分析:依据正方形的性质以及勾股定理、矩形的判定方法即可判断APM和BPN以及APE、BPF都是等腰直角三角形,四边形PEOF是矩
2、形,从而作出判断解答:解:四边形ABCD是正方形,BAC=DAC=45在APE和AME中,APEAME,故正确;PE=EM=PM,同理,FP=FN=NP正方形ABCD中ACBD,又PEAC,PFBD,PEO=EOF=PFO=90,且APE中AE=PE四边形PEOF是矩形PF=OE,PE+PF=OA,又PE=EM=PM,FP=FN=NP,OA=AC,PM+PN=AC,故正确;四边形PEOF是矩形,PE=OF,在直角OPF中,OF2+PF2=PO2,PE2+PF2=PO2,故正确BNF是等腰直角三角形,而POF不一定是,故错误;AMP是等腰直角三角形,当PMNAMP时,PMN是等腰直角三角形PM=
3、PN,又AMP和BPN都是等腰直角三角形,AP=BP,即P时AB的中点故正确故选B点评:本题是正方形的性质、矩形的判定、勾股定理得综合应用,认识APM和BPN以及APE、BPF都是等腰直角三角形,四边形PEOF是矩形是关键2、(2013新疆)如图,RtABC中,ACB=90,ABC=60,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着ABA的方向运动,设E点的运动时间为t秒(0t6),连接DE,当BDE是直角三角形时,t的值为()A2B2.5或3.5C3.5或4.5D2或3.5或4.5考点:相似三角形的判定与性质;含30度角的直角三角形专题:动点型分析:由RtABC中
4、,ACB=90,ABC=60,BC=2cm,可求得AB的长,由D为BC的中点,可求得BD的长,然后分别从若DBE=90与若EDB=90时,去分析求解即可求得答案解答:解:RtABC中,ACB=90,ABC=60,BC=2cm,AB=2BC=4(cm),BC=2cm,D为BC的中点,动点E以1cm/s的速度从A点出发,BD=BC=1(cm),BE=ABAE=4t(cm),若DBE=90,当AB时,ABC=60,BDE=30,BE=BD=(cm),t=3.5,当BA时,t=4+0.5=4.5若EDB=90时,当AB时,ABC=60,BED=30,BE=2BD=2(cm),t=42=2,当BA时,t
5、=4+2=6(舍去)综上可得:t的值为2或3.5或4.5故选D点评:此题考查了含30角的直角三角形的性质此题属于动点问题,难度适中,注意掌握分类讨论思想与数形结合思想的应用3、(2013新疆)如图,ABC中,DEBC,DE=1,AD=2,DB=3,则BC的长是()考点:相似三角形的判定与性质分析:根据DEBC,证明ADEABC,然后根据对应边成比例求得BC的长度解答:解:DEBC,ADEABC,则=,DE=1,AD=2,DB=3,AB=AD+DB=5,BC=故选C点评:本题考查了相似三角形的判定和性质,难度一般,解答本题的关键是根据平行证明ADEABC4、(2013内江)如图,在ABCD中,E
6、为CD上一点,连接AE、BD,且AE、BD交于点F,SDEF:SABF=4:25,则DE:EC=()A2:5B2:3C3:5D3:2考点:相似三角形的判定与性质;平行四边形的性质分析:先根据平行四边形的性质及相似三角形的判定定理得出DEFBAF,再根据SDEF:SABF=4:10:25即可得出其相似比,由相似三角形的性质即可求出 DE:EC的值,由AB=CD即可得出结论解答:解:四边形ABCD是平行四边形,ABCD,EAB=DEF,AFB=DFE,DEFBAF,SDEF:SABF=4:25,DE:AB=2:5,AB=CD,DE:EC=2:3故选B点评:本题考查的是相似三角形的判定与性质及平行四
7、边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键5、(2013自贡)如图,在平行四边形ABCD中,AB=6,AD=9,BAD的平分线交BC于E,交DC的延长线于F,BGAE于G,BG=,则EFC的周长为()A11B10C9D8考点:相似三角形的判定与性质;勾股定理;平行四边形的性质3718684分析:判断出ADF是等腰三角形,ABE是等腰三角形,DF的长度,继而得到EC的长度,在RtBGE中求出GE,继而得到AE,求出ABE的周长,根据相似三角形的周长之比等于相似比,可得出EFC的周长解答:解:在ABCD中,AB=CD=6,AD=BC=9,BAD的平分线交
8、BC于点E,BAF=DAF,ABDF,ADBC,BAF=F=DAF,BAE=AEB,AB=BE=6,AD=DF=9,ADF是等腰三角形,ABE是等腰三角形,ADBC,EFC是等腰三角形,且FC=CE,EC=FC=96=3,在ABG中,BGAE,AB=6,BG=4,AG=2,AE=2AG=4,ABE的周长等于16,又CEFBEA,相似比为1:2,CEF的周长为8故选D点评:本题主要考查了勾股定理、相似三角形、等腰三角形的性质,注意掌握相似三角形的周长之比等于相似比,此题难度较大6、(2013雅安)如图,在ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=.考点:
9、相似三角形的判定与性质;平行四边形的性质分析:由四边形ABCD是平行四边形,可得ABCD,AB=CD,继而可判定BEFDCF,根据相似三角形的对应边成比例,即可得BF:DF=BE:CD问题得解解答:解:四边形ABCD是平行四边形,ABCD,AB=CD,AE:BE=4:3,BE:AB=3:7,BE:CD=3:7ABCD,BEFDCF,BF:DF=BE:CD=3:7,即2:DF=3:7,DF=故答案为:点评:此题考查了相似三角形的判定与性质与平行四边形的性质此题比较简单,解题的关键是根据题意判定BEFDCF,再利用相似三角形的对应边成比例的性质求解7、(2013雅安)如图,DE是ABC的中位线,延
10、长DE至F使EF=DE,连接CF,则SCEF:S四边形BCED的值为()A1:3B2:3C1:4D2:5考点:相似三角形的判定与性质;全等三角形的判定与性质;三角形中位线定理分析:先利用SAS证明ADECFE(SAS),得出SADE=SCFE,再由DE为中位线,判断ADEABC,且相似比为1:2,利用相似三角形的面积比等于相似比,得到SADE:SABC=1:4,则SADE:S四边形BCED=1:3,进而得出SCEF:S四边形BCED=1:3解答:解:DE为ABC的中位线,AE=CE在ADE与CFE中,ADECFE(SAS),SADE=SCFEDE为ABC的中位线,ADEABC,且相似比为1:2
11、,SADE:SABC=1:4,SADE+S四边形BCED=SABC,SADE:S四边形BCED=1:3,SCEF:S四边形BCED=1:3故选A点评:本题考查了全等三角形、相似三角形的判定与性质,三角形中位线定理关键是利用中位线判断相似三角形及相似比8、(2013聊城)如图,D是ABC的边BC上一点,已知AB=4,AD=2DAC=B,若ABD的面积为a,则ACD的面积为()AaBCD考点:相似三角形的判定与性质分析:首先证明ACDBCA,由相似三角形的性质可得:ACD的面积:ABC的面积为1:4,因为ABD的面积为a,进而求出ACD的面积解答:解:DAC=B,C=C,ACDBCA,AB=4,A
12、D=2,ACD的面积:ABC的面积为1:4,ACD的面积:ABD的面积=1:3,ABD的面积为a,ACD的面积为a,故选C点评:本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型9、(2013菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A16B17C18D19考点:相似三角形的判定与性质;正方形的性质专题:计算题分析:由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答解答:解:如图,设正方形S2的边长为x,根据等腰
13、直角三角形的性质知,AC=x,x=CD,AC=2CD,CD=2,EC2=22+22,即EC=;S2的面积为EC2=8;S1的边长为3,S1的面积为33=9,S1+S2=8+9=17故选B点评:本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力10、(2013孝感)如图,在ABC中,AB=AC=a,BC=b(ab)在ABC内依次作CBD=A,DCE=CBD,EDF=DCE则EF等于()ABCD考点:相似三角形的判定与性质;等腰三角形的判定与性质分析:依次判定ABCBDCCDEDFE,根据相似三角形的对应边成比例的知识,可得出EF的长度解答:解:AB=AC,ABC=ACB,又CBD
14、=A,ABCBDC,同理可得:ABCBDCCDEDFE,=,=,=,解得:CD=,DE=,EF=故选C点评:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错11、(2013宜昌)如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与ABC相似,则点E的坐标不可能是()A(6,0)B(6,3)C(6,5)D(4,2)考点:相似三角形的性质;坐标与图形性质分析:根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断解答:解:ABC中,ABC=90,AB
15、=6,BC=3,AB:BC=2A、当点E的坐标为(6,0)时,CDE=90,CD=2,DE=1,则AB:BC=CD:DE,CDEABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,CDE=90,CD=2,DE=2,则AB:BCCD:DE,CDE与ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,CDE=90,CD=2,DE=4,则AB:BC=DE:CD,EDCABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,ECD=90,CD=2,CE=1,则AB:BC=CD:CE,DCEABC,故本选项不符合题意;故选B点评:本题考查了相似三角形的判定,难度中等牢记判定定理是
16、解题的关键12、(2013咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()ABCD考点:相似三角形的应用;正方形的性质;几何概率分析:求得阴影部分的面积与正方形ABCD的面积的比即可求得小鸟在花圃上的概率;解答:解:设正方形的ABCD的边长为a,则BF=BC=,AN=NM=MC=a,阴影部分的面积为()2+(a)2=a2,小鸟在花圃上的概率为=故选C点评:本题考查了正方形的性质及几何概率,关键是表示出大正方形的边长,从而表示出两个阴影正方形的边长,最后表示出面积13、(2013恩施州)如
17、图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A1:4B1:3C2:3D1:2考点:相似三角形的判定与性质;平行四边形的性质3718684分析:首先证明DFEBAE,然后利用对应变成比例,E为OD的中点,求出DF:AB的值,又知AB=DC,即可得出DF:FC的值解答:解:在平行四边形ABCD中,ABDC,则DFEBAE,=,O为对角线的交点,DO=BO,又E为OD的中点,DE=DB,则DE:EB=1:3,DF:AB=1:3,DC=AB,DF:DC=1:3,DF:FC=1:2故选D点评:本题考查了相似三角形的判定与性质以及平行
18、四边形的性质,难度适中,解答本题的关键是根据平行证明DFEBAE,然后根据对应边成比例求值14、(9-2图形的相似2013东营中考)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值( )A. 只有1个B. 可以有2个C. 可以有3个D. 有无数个10.B.解析:当直角边为6,8时,且另一个与它相似的直角三角形3,4也为直角边时,x的值为5,当8,4为对应边且为直角三角形的斜边时,x的值为,故x的值可以为5或.两种情况。15、(2013鄂州)如图,RtABC中,A=90,ADBC于点D,若BD:CD=3:2,则tanB=()ABCD考点:相似三
19、角形的判定与性质;锐角三角函数的定义3718684分析:首先证明ABDACD,然后根据BD:CD=3:2,设BD=3x,CD=2x,利用对应边成比例表示出AD的值,继而可得出tanB的值解答:解:在RtABC中,ADBC于点D,ADB=CDA,B+BAD=90,BAD+DAC=90,B=DAC,ABDACD,=,BD:CD=3:2,设BD=3x,CD=2x,AD=x,则tanB=故选D点评:本题考查了相似三角形的判定与性质及锐角三角函数的定义,难度一般,解答本题的关键是根据垂直证明三角形的相似,根据对应变成比例求边长16、(2013绥化)如图,点A,B,C,D为O上的四个点,AC平分BAD,A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 100 试卷 分类 汇编 三角形 相似
链接地址:https://www.31ppt.com/p-2893186.html