典型中考反比例函数大题(附答案详解).doc
《典型中考反比例函数大题(附答案详解).doc》由会员分享,可在线阅读,更多相关《典型中考反比例函数大题(附答案详解).doc(30页珍藏版)》请在三一办公上搜索。
1、一解答题(共20小题)1(2012资阳)已知:一次函数y=3x2的图象与某反比例函数的图象的一个公共点的横坐标为1(1)求该反比例函数的解析式;(2)将一次函数y=3x2的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标;(3)请直接写出一个同时满足如下条件的函数解析式:函数的图象能由一次函数y=3x2的图象绕点(0,2)旋转一定角度得到;函数的图象与反比例函数的图象没有公共点2(2012重庆)已知:如图,在平面直角坐标系中,一次函数y=ax+b(a0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,2),tanBO
2、C=(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得BCE与BCO的面积相等,求出点E的坐标3(2012肇庆)已知反比例函数 图象的两个分支分别位于第一、第三象限(1)求k的取值范围;(2)若一次函数y=2x+k的图象与该反比例函数的图象有一个交点的纵坐标是4求当x=6时反比例函数y的值;当 时,求此时一次函数y的取值范围4(2012云南)如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)、B(1,2)两点,与x轴交于点C(1)分别求反比例函数和一次函数的解析式(关系式);(2)连接OA,求AOC的面积5(2012玉林)如图,在平面
3、直角坐标系xOy中,梯形AOBC的边OB在x轴的正半轴上,ACOB,BCOB,过点A的双曲线y=的一支在第一象限交梯形对角线OC于点D,交边BC于点E(1)填空:双曲线的另一支在第_象限,k的取值范围是_;(2)若点C的左标为(2,2),当点E在什么位置时,阴影部分的面积S最小?(3)若=,SOAC=2,求双曲线的解析式6(2012义乌市)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k0)在第一象限内的图象经过点D、E,且tanBOA=(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形
4、的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长7(2012烟台)如图,在平面直角坐标系中,A,B两点的纵坐标分别为7和1,直线AB与y轴所夹锐角为60(1)求线段AB的长;(2)求经过A,B两点的反比例函数的解析式8(2012厦门)已知点A(1,c)和点B(3,d)是直线y=k1x+b与双曲线(k20)的交点(1)过点A作AMx轴,垂足为M,连接BM若AM=BM,求点B的坐标(2)若点P在线段AB上,过点P作PEx轴,垂足为E,并交双曲线(k20)于点N当取最大值时,有PN=,求此时双曲线的解析式9(2012咸宁)如图,一次函数y1=kx+
5、b的图象与反比例函数的图象交于A(1,6),B(a,2)两点(1)求一次函数与反比例函数的解析式;(2)直接写出y1y2时x的取值范围10(2012天津)已知反比例函数y=(k为常数,k1)()其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;()若在其图象的每一支上,y随x的增大而减小,求k的取值范围;()若其图象的一直位于第二象限,在这一支上任取两点A(x1,y1)、B(x2,y2),当y1y2时,试比较x1与x2的大小11(2012泰州)如图,已知一次函数y1=kx+b图象与x轴相交于点A,与反比例函数的图象相交于B(1,5)、C(,d)两点点P(m,n)是一次
6、函数y1=kx+b的图象上的动点(1)求k、b的值;(2)设1m,过点P作x轴的平行线与函数的图象相交于点D试问PAD的面积是否存在最大值?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由;(3)设m=1a,如果在两个实数m与n之间(不包括m和n)有且只有一个整数,求实数a的取值范围12(2012南昌)如图,等腰梯形ABCD放置在平面坐标系中,已知A(2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C(1)求点C的坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移2个单位后,问点B是否落在双曲线上?13(2012乐山)如图,直线y=2x+2与y轴交于A点,与
7、反比例函数(x0)的图象交于点M,过M作MHx轴于点H,且tanAHO=2(1)求k的值;(2)点N(a,1)是反比例函数(x0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由14(2012济南)如图,已知双曲线y=经过点D(6,1),点C是双曲线第三象限上的动点,过C作CAx轴,过D作DBy轴,垂足分别为A,B连接AB,BC(1)求k的值;(2)若BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由15(2011攀枝花)如图,已知反比例函数(m是常数,m0),一次函数y=ax+b(a、b为常数,a0),其中一次
8、函数与x轴,y轴的交点分别是A(4,0),B(0,2)(1)求一次函数的关系式;(2)反比例函数图象上有一点P满足:PAx轴;PO=(O为坐标原点),求反比例函数的关系式;(3)求点P关于原点的对称点Q的坐标,判断点Q是否在该反比例函数的图象上16(2010义乌市)如图,一次函数y=kx+2的图象与反比例函数y=的图象交于点P,点P在第一象限PAx轴于点A,PBy轴于点B一次函数的图象分别交x轴、y轴于点C、D,且SPBD=4,=(1)求点D的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当x0时,一次函数的值大于反比例函数的值的x的取值范围17(2010广州)已知反比例函数y
9、=(m为常数)的图象经过点A(1,6)(1)求m的值;(2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标18(2010北京)已知反比例函数y=的图象经过点A(,1)(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30得到线段OB判断点B是否在此反比例函数的图象上,并说明理由;(3)已知点P(m,m+6)也在此反比例函数的图象上(其中m0),过P点作x轴的垂线,交x轴于点M若线段PM上存在一点Q,使得OQM的面积是,设Q点的纵坐标为n,求n22n+9的值19(2012河北)如图,四边形ABCD是平行四边形,点A(1
10、,0),B(3,1),C(3,3)反比例函数y=(x0)的函数图象经过点D,点P是一次函数y=kx+33k(k0)的图象与该反比例函数图象的一个公共点(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+33k(k0)的图象一定过点C;(3)对于一次函数y=kx+33k(k0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程)20(2012宜宾)如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(4,0)(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与COD的面积相等求点P的坐标答案
11、与评分标准一解答题(共20小题)1(2012资阳)已知:一次函数y=3x2的图象与某反比例函数的图象的一个公共点的横坐标为1(1)求该反比例函数的解析式;(2)将一次函数y=3x2的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标;(3)请直接写出一个同时满足如下条件的函数解析式:函数的图象能由一次函数y=3x2的图象绕点(0,2)旋转一定角度得到;函数的图象与反比例函数的图象没有公共点考点:反比例函数与一次函数的交点问题;一次函数图象与几何变换。分析:(1)先求出两函数的交点坐标,利用待定系数法即可求得反比例函数的解析式;(2)平移后的图象对应的解析式为y=3x+2,联立两函数
12、解析式,进而求得交点坐标;(3)常数项为2,一次项系数小于1的一次函数均可解答:解:(1)把x=1代入y=3x2,得y=1,设反比例函数的解析式为,把x=1,y=1代入得,k=1,该反比例函数的解析式为;(2)平移后的图象对应的解析式为y=3x+2,解方程组,得 或平移后的图象与反比例函数图象的交点坐标为(,3)和(1,1);(3)y=2x2(结论开放,常数项为2,一次项系数小于1的一次函数均可)点评:考查了反比例函数与一次函数的交点问题,一次函数图象与几何变换,解题的关键是待定系数法求函数解析式,掌握各函数的图象和性质2(2012重庆)已知:如图,在平面直角坐标系中,一次函数y=ax+b(a
13、0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,2),tanBOC=(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得BCE与BCO的面积相等,求出点E的坐标考点:反比例函数综合题。菁优网版权所有分析:(1)过B点作BDx轴,垂足为D,由B(n,2)得BD=2,由tanBOC=,解直角三角形求OD,确定B点坐标,得出反比例函数关系式,再由A、B两点横坐标与纵坐标的积相等求n的值,由“两点法”求直线AB的解析式;(2)点E为x轴上的点,要使得BCE与BCO的面积相等,只需要CE=CO即可,根据直线A
14、B解析式求CO,再确定E点坐标解答:解:(1)过B点作BDx轴,垂足为D,B(n,2),BD=2,在RtOBD在,tanBOC=,即=,解得OD=5,又B点在第三象限,B(5,2),将B(5,2)代入y=中,得k=xy=10,反比例函数解析式为y=,将A(2,m)代入y=中,得m=5,A(2,5),将A(2,5),B(5,2)代入y=ax+b中,得,解得,则一次函数解析式为y=x+3;(2)由y=x+3得C(3,0),即OC=3,SBCE=SBCO,CE=OC=3,OE=6,即E(6,0)点评:本题考查了反比例函数的综合运用关键是通过解直角三角形确定B点坐标,根据反比例函数图象上点的坐标特求A
15、点坐标,求出反比例函数解析式,一次函数解析式3(2012肇庆)已知反比例函数 图象的两个分支分别位于第一、第三象限(1)求k的取值范围;(2)若一次函数y=2x+k的图象与该反比例函数的图象有一个交点的纵坐标是4求当x=6时反比例函数y的值;当 时,求此时一次函数y的取值范围考点:反比例函数与一次函数的交点问题;反比例函数的性质。菁优网版权所有专题:计算题。分析:(1)由反比例函数图象过第一、三象限,得到反比例系数k1大于0,列出关于k的不等式,求出不等式的解集得到k的范围;(2)将一次函数与反比例函数解析式联立组成方程组,由一次函数与反比例函数交点纵坐标为4,将y=4代入一次函数及反比例函数
16、解析式,用k表示出x,两种相等得到关于k的方程,求出方程的解得到k的值,确定出反比例函数解析式,然后将x=6代入求出的反比例函数解析式中即可求出对应的函数值y的值;将求出的k值代入一次函数解析式中,确定出解析式,应y表示出x,根据x的范围列出关于y的不等式,求出不等式的解集即可得到y的取值范围解答:解:(1)反比例函数图象两支分别位于第一、三象限,k10,解得:k1;(2)联立一次函数与反比例函数解析式得:,又一次函数与反比例函数交点纵坐标为4,将y=4代入得:4x=k1,即x=,将y=4代入得:2x+k=4,即x=,=,即k1=2(4k),解得:k=3,反比例解析式为y=,当x=6时,y=;
17、由k=3,得到一次函数解析式为y=2x+3,即x=,0x,0,解得:3y4,则一次函数y的取值范围是3y4点评:此题考查了反比例函数与一次函数的交点问题,以及反比例函数的性质反比例函数y=(k0),当k0时函数图象位于第一、三象限;当k0时,函数图象位于第二、四象限4(2012云南)如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)、B(1,2)两点,与x轴交于点C(1)分别求反比例函数和一次函数的解析式(关系式);(2)连接OA,求AOC的面积考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;待定系数法求反比例函数解析式;三角形的面积。菁优网版权
18、所有分析:(1)设一次函数解析式为y1=kx+b(k0);反比例函数解析式为y2=(a0),将A(2,1)、B(1,2)代入y1得到方程组,求出即可;将A(2,1)代入y2得出关于a的方程,求出即可;(2)求出C的坐标,根据三角形的面积公式求出即可解答:解:(1)设一次函数解析式为y1=kx+b(k0);反比例函数解析式为y2=(a0),将A(2,1)、B(1,2)代入y1得:,y1=x1;将A(2,1)代入y2得:a=2,;答:反比例函数的解析式是y2=,一次函数的解析式是y1=x1(2)y1=x1,当y1=0时,x=1,C(1,0),OC=1,SAOC=11=答:AOC的面积为点评:本题考
19、查了对一次函数与反比例函数的交点,三角形的面积,用待定系数法求一次函数、反比例函数的解析式的应用,通过做此题培养了学生的计算能力,题目具有一定的代表性,是一道比较好的题目5(2012玉林)如图,在平面直角坐标系xOy中,梯形AOBC的边OB在x轴的正半轴上,ACOB,BCOB,过点A的双曲线y=的一支在第一象限交梯形对角线OC于点D,交边BC于点E(1)填空:双曲线的另一支在第三象限,k的取值范围是k0;(2)若点C的左标为(2,2),当点E在什么位置时,阴影部分的面积S最小?(3)若=,SOAC=2,求双曲线的解析式考点:反比例函数综合题。菁优网版权所有专题:综合题。分析:(1)根据反比例函
20、数图象与性质得到:双曲线y=的一支在第一象限,则k0,得到另一支在第三象限;(2)根据梯形的性质,ACx轴,BCx轴,而点C的坐标为(2,2),则A点的纵坐标为2,E点的横坐标为2,B点坐标为(2,0),再分别把y=2或x=2代入y=可得到A点的坐标为(,2),E点的坐标为(2,),然后计算S阴影部分=SACE+SOBE=(2)(2)+2=k2k+2,配方得(k2)2+,当k=2时,S阴影部分最大值为,则E点的坐标为(2,1),即E点为BC的中点;(3)设D点坐标为(a,),由=,则OD=DC,即D点为OC的中点,于是C点坐标为(2a,),得到A点的纵坐标为,把y=代入y=得x=,确定A点坐标
21、为(,),根据三角形面积公式由SOAC=2得到(2a)=1,然后解方程即可求出k的值解答:解:(1)三,k0;(2)梯形AOBC的边OB在x轴的正半轴上,ACOB,BCOB,而点C的坐标标为(2,2),A点的纵坐标为2,E点的横坐标为2,B点坐标为(2,0),把y=2代入y=得x=;把x=2代入y=得y=,A点的坐标为(,2),E点的坐标为(2,),S阴影部分=SACE+SOBE=(2)(2)+2=k2k+2=(k2)2+,当k2=0,即k=2时,S阴影部分最大,最大值为;E点的坐标为(2,1),即E点为BC的中点,当点E在BC的中点时,阴影部分的面积S最小;(3)设D点坐标为(a,),=,O
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 典型 中考 反比例 函数 答案 详解
链接地址:https://www.31ppt.com/p-2890818.html