20.3矩形 菱形 正方形教案.doc
《20.3矩形 菱形 正方形教案.doc》由会员分享,可在线阅读,更多相关《20.3矩形 菱形 正方形教案.doc(15页珍藏版)》请在三一办公上搜索。
1、20.3矩形、菱形、正方形矩形一、教材分析:(一) 教材的地位和作用:本课要研究的是矩形的概念及性质和判定,是在学生已经学过四边形、平行四边形的概念及性质和判定的基础上进行的,是这一章的重点内容之一。因为矩形是特殊的平行四边形,而后继课要学的正方形又是特殊的矩形,所以它既是前面所学知识的应用,又是后面学习正方形的基础,具有承上启下的作用。另外,本节课的内容还渗透着转化、对比的数学思想,重在训练学生的逻辑思维能力和分析、归纳、总结的能力,因此,这节课无论在知识上,还是在对学生能力培养上都起着非常重要的作用。(二)教学目标:在学生已有的认知基础上,依据课程标准,结合本课在教材中的地位、作用,确定本
2、节课的教学目标为:1、知识目标: (1)知道什么是矩形(2)理解矩形与平行四边形的关系(3)能说出矩形的性质及推论(4)掌握矩形的判定方法(5)能综合运用矩形的知识解决有关问题2、能力目标:(1)会运用矩形的性质及推论进行有关的论证和计算(2)会运用矩形的判定定理解决有关问题(2)会观察、会比较、会分析、会归纳3、德育目标:初步具有把感性认识上升到理性认识的辩证唯物主义观点。4、情感目标:养成有良好的学习习惯,有浓厚的学习兴趣。(三)、教学重点、难点、关键及依据:重点:矩形的概念、性质和判定定理难点:矩形与平行四边形的关系关键:加强概念教学是突破难点的关键依据:本课在教材中的地位和作用及教学目
3、标和学生的实际情况。二、教学方法和手段:(一)教学方法:根据本课的内容和初二学生的特点以及目标教学的要求,采用边启发、边分析、边推理,层层设疑,讲练结合的要求。通过演示平行四边形模型,激发学生的学习兴趣。教学时力求做到“三让”,即能让学生想的尽量让学生想,能让学生做的尽量让学生做,能让学生说的尽量说,使教师为主导,学生为主体,得到充分体现。学生通过“想、做、说”的一系列活动,在掌握知识的同时,使其动脑、动手、动口,积极思维,进行“探究式学习”使能力得到锻炼。(二)教学手段:为提高课堂效率和质量,借助于多媒体信息技术进行教学。(三)教具:三角板,平行四边形模型,多媒体教学设备。三、教材处理:(一
4、)学生状况分析:1、知识方面:学生已掌握了四边形及平行四边形的概念、性质等知识。2、方法方面:学生已积累了学习特殊四边形性质的方法,即按“角、边、对角线”的思路进行学习。3、思维方面:学生的思维还依赖于具体、形象、易模仿的特点,因此逻辑思维能力需要加强。4、对策:(1)注意问题情境的教学。(2)使用启发诱导的方法。(3)贯彻循序渐进的原则。(二)教材处理:基本按照教材的意图讲授,适当补充练习四、教学过程及设计:第一课时(一)用运动方式探索矩形的概念及性质1复习平行四边形的有关概念及边、角、对角线方面的性质2复习平行四边形和四边形的关系3用教具演示如图,从平行四边形到矩形的演变过程,得到矩形的概
5、念,并理解矩形与平行四边形的关系分析:(1)矩形的形成过程是平行四边形的一个角由量变到质变的变化过程(2)矩形只比平行四边形多一个条件:“有一个角是直角”,不能用“四个角都是直角的平行四边形是矩形”来定义矩形(3)矩形是特殊的平行四边形,具有平行四边形的一切性质(共性),还具有它自己特殊的性质(个性)(4)从边、角、对角线方面,让学生观察或度量猜想矩形的特殊性质 边:对边与平行四边形性质相同,邻边互相垂直(与性质定理1等价) 角:四个角是直角(性质定理 1) 对角钱:相等且互相平分(性质定理2)4证明矩形的两条性质定理及推论 引导学生利用矩形与平行四边形的从属关系、矩形的概念以及全等三角形的知
6、识,规范证明两条性质定理及推论指出:推论叙述了直角三角形中线段的倍分关系,是直角三角形很重要的一条性质 (二)应用举例例1已知:如下图,矩形 ABCD,AB长8 cm ,对角线比 AD边长4 cm求 AD的长及A到BD的距离AE的长分析:(1)矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,在此可以让学生作一个系统的复习,在直角三角形中,斜边大于直角边边: 勾股定理 斜边中线等于斜边的一半角:两锐角互余.边角关系:30角所对的直角边等于斜边的一半。(2)利用方程的思想,解决直角三角形中的计算。设AD=xcm, 则对角线长(x+4)cm, 由题意,x2+82=(x+4)2.解得x
7、=6.(3)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式: AEDB ADAB,解得 AE 4.8cm例 2如图(a),在矩形 ABCD中,两条对角线交于点 O,AOD 120, AB 4求:(1)矩形对角线长;(2)BC边的长;(3)若过O垂直于BD的直线交AD于E,交BC于F(b)求证: EFBF, OF=CF;(4)如图(c),若将矩形沿直线MN折叠,使顶点 B与D重合,M,N交AD于M,交BC于N求折痕MN长分析:(1)矩形ABCD的两条对角线AC,BD把矩形分成四个等腰三角形,即AOB,BOC,COD和DOA让学生证明后熟记这
8、个结论,以便在复杂图形中尽快找到解题的思路(2)由已知AOD 120及矩形的性质分解出基本图形“含30角的直角三角形”,经过计算可解决(2),(3)题(3)第(4)题是用“折叠”方式叙述已知,利用轴对称的知识可以得到:折痕MN应为对角线BD的垂直平分钱,即为第(3)题中的EF.根据第(3)题结论:MNBC2NC=BC= 答:(1)对角线BD=8;(2) BC;(3)MN例3已知:如图(a),E是矩形ABCD边CB延长线上一点, CE CA, F为AE中点求证:BFFD证法一:如图(a),由已知“CE=CA,F为AE中点”,联想到“等腰三角形三合一”的性质.连结FC,证明1+2=90,问题转化为
9、证明1=+3,这可通过AFDBFC(SAS)来实现.证法二:如图(b),由求证“BFFD”联想“等腰三角形三线合一”,构造以DF为底边上高的等腰三角形,分别延长BF,DA交于G,连结BD,转化为证明BDG为等腰三角形以及F为GB中点,这可通过AGFEBF(ASA)及GD=EC=AC=BD来实现。(三)师生共同小结1、矩形与平行四边形的关系,如图.指出由平行四边形得到矩形,只需要增加一个条件:一个角是直角.2、矩形的概念及性质。3、矩形中常利用直角三角形的性质进行计算和证明。(四)作业课本2,4,5题。补充题:1.如图,E为矩形ABCD对角线AC上一点,DEAC于E,ADE: EDC=2:3,求
10、:BDE的度数.(答:18)2.如图,折叠矩形ABCD纸片,先折出折痕BD,再折叠使A落在对角线BD上A位置上,折痕为DG。AB=2,BC=1。求:AG的长。(答5-12)第二课时(一)复习1、复习矩形与平行四边形及四边形的从属关系2、复习矩形的定义,并指出由平行四边形得到矩形需添加一个独立条件,思考:由四边形得到矩形需要添加几个独立条件?3、复习矩形的性质,并指出性质定理1可改为“矩形中三个角是直角”这样三个独立条件4、在复习提问的同时,逐步完成下图:5、逆向探索矩形的判定方法(1)猜想矩形性质的逆命题成立。 有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形(2)证明猜想,得到两个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 20.3矩形 菱形 正方形教案 20.3 矩形 正方形 教案
链接地址:https://www.31ppt.com/p-2890274.html