1.4.3正切函数的图像与性质(教、学案)学案导学案下载.doc
《1.4.3正切函数的图像与性质(教、学案)学案导学案下载.doc》由会员分享,可在线阅读,更多相关《1.4.3正切函数的图像与性质(教、学案)学案导学案下载.doc(10页珍藏版)》请在三一办公上搜索。
1、 临清三中数学组 编写人:桑立红 审稿人:庞红玲 李怀奎1.4.3正切函数的图像与性质【教材分析】 正切函数的图象和性质 它前承正、余弦函数,后启必修五中的直线斜率问题。研究正切函数的图象与性质过程不仅是对正、余弦曲线研讨方法的一种再现,更是一种提升,同时又为后续的学习奠定了基石。教材单刀直入,直接进入画图工作,没有给出任何提示。正切函数与正弦函数在研究方法上类似,我采用以类比的方式,让学生回忆正弦曲线的作图过程与方法,进而启发、引导学生发现作正切曲线的一种方法。教材上直接圈定了区间(),这样限制了学生的思维,我把空间留给学生,采用让学生自己选择周期,设计一个得到正切曲线的方法。这样,不仅发挥
2、了学生的能动性,增强动脑、动手绘图的能力,而且,在此过程中,学生会注意到画正切曲线的细节。在得到图象后,单调性是一个难点,我设计了几个判断题帮助学生理解该性质,并用比大小的题型启发学生从代数和几何两种角度看问题。【教学目标】正切函数是继正、余弦之后的又一个三角函数,三者在研究方法与研究内容上类似,但某些性质有所不同,这就养成学生在画图时必须全面考虑问题。本着课改理念,养成学生对知识的勇于探索精神,学生亲自体会正切曲线的获得过程,这样学生的动手实践能力有了提高,又体会到学习数学的乐趣,根据教学要求及学生现有的认知水平,现制定以下教学目标:1.会用单位圆内的正切线画正切曲线,并根据正切函数图象掌握
3、正切函数的性质,用数形结合的思想理解和处理问题。2.首先学生自主绘图,通过投影仪纠正图像,投影完整的正确图象,然后再让学生观察,类比正弦,探索知识。3.在得到正切函数图像的过程中,学会一类周期性函数的研究方式,通过自己动手得到图像让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。【教学重点难点】教学重点:正切函数的图象及其主要性质。教学难点:利用正切线画出函数y=tanx的图象,对直线x=,是y=tanx的渐近线的理解,对单调性这个性质的理解。【学情分析】 知识结构:在函数中我们学习了如何研究函数,而对正弦函数的研究又再一次做了一个模板,所以学生已经具备了一定的绘图技能,类比推
4、理画出图象,并通过观察图象,总结性质的能力。但在画正切函数图象时,还有许多需要注意的地方,这又提升了学生分析问题的能力及严密认真的态度。心理特征:高一学生已经初步形成了是非观,具备了分辨是非的能力及语言表达能力。能够通过讨论、合作交流、辩论得到正确的知识。但在处理问题时学生很容易“想当然”用事,考虑问题不深入,往往会造成错误的结果。【教学方法】1学案导学:见后面的学案。2新授课教学基本环节:预习检查、总结疑惑情境导入、展示目标合作探究、精讲点拨反思总结、当堂检测发导学案、布置预习【课前准备】1学生的学习准备:预习“正切函数的图像与性质”,初步把握作图的方法与性质的推导。2教师的教学准备:课前预
5、习学案,课内探究学案,课后延伸拓展学案。【课时安排】1课时【教学过程】一、预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。二、复习导入、展示目标。问题1:就我们前面所学的内容中,正切函数与正余弦函数的有何区别?三角函数y=sinxy=cosxy=tanx定义域RR值域1,11,1R周期性及周期22奇偶性奇偶奇大家怎么知道正切函数的值域是R? 通过单位圆中的正切线可以得到。那请同学们回忆正切线在每一个象限的画法。(设计意图:通过此问题确定本节课的一个基调:类比学习;通过此问题来复习我们已经研究过的正切函数的性质;通过比较让学生了解正切与正弦的区别,在画图像的时候
6、注意区别;因为在作图时必须用正切线的知识,所以在此做一个相应的复习和准备工作,顺应学生的思维在知识链接处提问) 问题2:我们用什么样的方式得到正余弦函数的图像的?利用单位圆内的正弦线,得到在一个周期,即0,2 内的图象,再利用周期性得到在定义域内的图象。问题3:请同学们根据所学知识设计一个研究正切函数图像与性质的方案。 方案:第一步:画出正切函数的在一个周期内的图象; 第二步:将图象向左、向右平移拓展到整个定义域上去; 第三步:根据图象总结性质。三、合作探究、精讲点拨。请同学们解决方案的第一步,先画出y=tanx在一个周期内的简图。给学生充足的时间与空间,发挥学生的主动性,这样不仅提高了学生的
7、动手实践能力,还培养了学生对数学的兴趣。注:有的学生可能会想到利用函数的奇偶性来画图,很多学生会画出(0.)的图象,教师暂时不予评价,等待学生形成图象。教师用投影仪展示作图结果,学生之间相互评价,指出优点和不足之处,并鼓励学生阐述自己的观点。教师直接在投影仪上纠正学生错误的图像;并将(0,)的图象与的图像进行比较来说明只是周期的选择不同,拓展到整个定义域上也是一致的。通过学生之间的点评与总结,引出渐近线,并请同学们总结出:要画出一个周期内的图象,首先,选择哪段区间较好,其次,在画图象的过程中应该注意什么?投影仪展示完整图像。目的是规范作图,理顺思路的作用,并画出在定义域上的图象。(设计意图:在
8、做好整体知识方法的铺垫后,学生完全有能力自己得到图象,并且通过交流发现自己的问题,所以整体做了一个这样的处理。而根据知识的发生发展和获得结论这个过程,在最后给学生展示标准的图象以留下正确和深刻的印象)总结正切函数的性质。分小组根据正切函数图象去验证正切函数已有的性质,并找出其它的性质(主要就指单调性,若学生提及对称性就一起分析,若学生不提也不加以讨论,因为高考要求没有对对称性的涉及)。一组总结后,其它各小组补充或改正。培养学生之间的团结协作能力及勇于探索的精神。有部分学生会得到正切函数在定义域上是单调增函数的结论,所以为了突破这个难点,另外又设计了三道判断题让学生小组讨论形成结果。判断下列语句
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.4 正切 函数 图像 性质 学案导学案 下载

链接地址:https://www.31ppt.com/p-2888702.html