示范教案一2.2.2提公因式法(二).doc
《示范教案一2.2.2提公因式法(二).doc》由会员分享,可在线阅读,更多相关《示范教案一2.2.2提公因式法(二).doc(3页珍藏版)》请在三一办公上搜索。
1、第三课时课 题2.2.2 提公因式法(二)教学目标(一)教学知识点进一步让学生掌握用提公因式法分解因式的方法.(二)能力训练要求进一步培养学生的观察能力和类比推理能力.(三)情感与价值观要求通过观察能合理地进行分解因式的推导,并能清晰地阐述自己的观点.教学重点能观察出公因式是多项式的情况,并能合理地进行分解因式.教学难点准确找出公因式,并能正确进行分解因式.教学方法类比学习法教具准备无教学过程.创设问题情境,引入新课师上节课我们学习了用提公因式法分解因式,知道了一个多项式可以分解为一个单项式与一个多项式的积的形式,那么是不是所有的多项式分解以后都是同样的结果呢?本节课我们就来揭开这个谜.新课讲
2、解一、例题讲解例2把a(x3)+2b(x3)分解因式.分析:这个多项式整体而言可分为两大项,即a(x3)与2b(x3),每项中都含有(x3),因此可以把(x3)作为公因式提出来.解:a(x3)+2b(x3)=(x3)(a+2b)师从分解因式的结果来看,是不是一个单项式与一个多项式的乘积呢?生不是,是两个多项式的乘积.例3把下列各式分解因式:(1)a(xy)+b(yx);(2)6(mn)312(nm)2.分析:虽然a(xy)与b(yx)看上去没有公因式,但仔细观察可以看出(xy)与(yx)是互为相反数,如果把其中一个提取一个“”号,则可以出现公因式,如yx=(xy).(mn)3与(nm)2也是如
3、此.解:(1)a(xy)+b(yx)=a(xy)b(xy)=(xy)(ab)(2)6(mn)312(nm)2=6(mn)312(mn)2=6(mn)312(mn)2=6(mn)2(mn2).二、做一做请在下列各式等号右边的括号前填入“+”或“”号,使等式成立:(1)2a=_(a2);(2)yx=_(xy);(3)b+a=_(a+b);(4)(ba)2=_(ab)2;(5)mn=_(m+n);(6)s2+t2=_(s2t2).解:(1)2a=(a2);(2)yx=(xy);(3)b+a=+(a+b);(4)(ba)2=+(ab)2;(5)mn=(m+n);(6)s2+t2=(s2t2).课堂练习
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 示范教案一2.2.2 提公因式法二 示范 教案 2.2 公因式

链接地址:https://www.31ppt.com/p-2887676.html