新人教版初中八级数学上册第十五章《提公因式法》精品教案.doc
《新人教版初中八级数学上册第十五章《提公因式法》精品教案.doc》由会员分享,可在线阅读,更多相关《新人教版初中八级数学上册第十五章《提公因式法》精品教案.doc(11页珍藏版)》请在三一办公上搜索。
1、新人教版初中八年级数学上册第十五章提公因式法精品教案 一、教学目标:知识与技能:了解因式分解的意义;会确定多项式中各项的公因式,会用提公因式法分解多项式的因式;会利用因式分解进行简便计算。过程与方法:经历探究因式分解的意义的过程,了解因式分解和整式乘法是整式的两种相反方向的变形。经历用提公因式法分解因式的过程,了解分配律与因式分解的互逆关系,培养学生的逆向思维。情感态度与价值观:通过与质因数分解的变化,让学生感悟数学中数与式的共同点,体验数学的类比思想;通过对提公因式是多项式的因式分解的学习,渗透整体思想,培养换元意识。二、教学重点:因式分解的概念及提公因式法因式分解。三、教学难点:多项式中公
2、因式的确定和当公因式是多项式时的因式分解。四、教学过程设计:问题与情境设计师生活动设计情景引入1、630能被哪些数整除?说说你是怎样想的。2、当a=101,b=99时,求a2-b2。教师引导学生进行质因数分解,然后指定一生回答:630=23257从而得出本题的答案。学生独立思考,小组交流,各组派代表发言,师生共同总结做题方法:直接把a=101,b=99代入计算。 用平方差公式先把a2b2变形成(a+b)(a-b),再代入计算。比较以上两种方法,第种更简便。 通过问题2,让学生感受到为了使运算更简便和准确,在式的变形中,有时需要将一个多项式写成几个整式的积的形式。自主探究探究活动一(一)因式分解
3、的概念问题1 请把下列多项式写成整式的乘积的形式:(1)x2+x=(2)x2-1=探究活动二(二)运用提公因式法因式分解问题1 填空 问题2 把8a3b+12ab3c分解因式。解:8a3b+12ab3c =4ab22a2+4ab23bc =4ab2(2a2+3bc)问题3 把2a(b+c)-3(b+c)分解因式 解:2a(b+c)-3(b+c) =(b+c)(2a-3)教师引导学生根据整式的乘法和逆向思维原理进行转化,指定两生口答,得出正确答案。让学生仔细观察式子的特点,得出因式分解的概念。把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。 因式分解
4、多项式 几个整式的积(板书) 整式乘法 说明因式分解和整式乘法是两种相反的变形。教师引导学生观察多项式的各项有什么特点,在学生独立思考、小组讨论的基础上,师生共同总结:若多项式的各项都有一个公共因式,我们把这个因式叫做这个多项式的公因式。(板书)让学生体验:ma+mb+mc=m(a+b+c)从左到右是怎样得到的?师生共同归纳得出:把一个多项式分解成两个因式乘积的形式,其中一个因式是各项的公因式,另一个因式是这个多项式除以公因式所得的商,像这种分解因式的方法叫做提公因式法。(板书)教师提问:如何确定这个多项式的公因式?学生先独立思考,然后小组讨论达成一致意见,教师指定学生发言。师生共同归纳:公因
5、式的找法技巧:系数:各项系数的最大公约数字母:各项中都含有的字母的指数:最低的。(板书)教师引导学生对该多项式的每项因式特点仔细观察,小组交流后,指定一名学生展示。师强调:把b+c看做一个整体时,公因式就是b+c。让学生充分感受数学中的整体思想,培养他们的换元意识。 教师引导学生回顾以上三个问题的做题过程,师生总结:提公因式法分解因式的一般步骤:(1)确定公因式;(2)用公因式去除这个多项式,所得的商作为另一个因式;(3)把多项式写成这两个因式的积的形式。(板书)尝试应用1、下列各式从左到右的变形中,是因式分解的为( )Ax(a-b)=ax-bxBx2-1+y2=(x-1)(x+1)+y2Ca
6、x+bx+c=x(a+b)+cDx2-4=(x+2)(x-2)2、用提公因式法分解因式:(1)12a2b3c-8a2b2c+6ab3c2(2)6(a-b)2+3(a-b)(3)15xy+10x2-5x(4)-4a3+16a2-18a 学生独立完成,教师指定4生到黑板板书第2题。 完成后,师生共同纠错。 针对第2题(3)(4)总结: 某项提出莫漏1;首项为负先提负。 补偿提高1、把下列各式分解因式:(1)2a(y-z)-3b(z-y)(2)-2p2(p2+q2)+6pq(p2+q2)(3)6m(x-y)3-3mn(y-x)2(4)5a(x-y-z)-2bx+2by+2bz2、计算:(1)0.84
7、12+120.6-0.4412(2)534+2433+63323、20062+2006能被2007整除吗?学生先独立完成,然后小组合作交流。教师巡视点拨。学生展示。师生共同纠错,总结强调:有时多项式的各项表面上无公因式,但将其中一项变形后,即可发现公因式。小结与作业课堂小结:围绕以下几个问题总结:1、什么是因式分解?2、什么是多项式的公因式?如何确定公因式?3、说说提公因式法的一般步骤。4、还有哪些问题需注意?作业:教科书第170页习题15.4第1题,第4题(1)。学生归纳,教师作必要的点拨、补充。 达标测评题一、 选择题1、 下列从左到右的变形,属于正确的分解因式的是( )A(y+2)(y-
8、2)=y2-4 Ba2+2a+1=a(a+2)+1Cb2+6b+9=(b+3)2 Dx2-5x-6=(x-1)(x+6)2、将a3b3-a2b3-ab分解因式得( ) Aab(a2b2-ab2-1) Bab(a2b2-ab2)Ca(a2b3-ab3-b) Db(a3b2-a2b2-a)二、解答题3、用提公因式法分解因式(1)a2b-ab2(2)(3)12a(x2+y2)-18b(x2+y2)(4)2a(x-y)4-3b(y-x)3三、选做题4、先分解因式,再求值4a2(x+7)-3(x+7),其中,a= -5,x=3答案:1、C 2、A 3、(1)ab(a-b) (2) (3)6(x2+y2)
9、(2a-3b) (4) (x-y)3(2ax-2ay+3b)或(y-x)3(2ay-2ax-3b) 4、970八年级数学(上册) 课题 :15.4.2公式法(1) 一、教学目标:知识与技能:1.掌握用平方差公式分解因式的方法。2.掌握提取公因式法、平方差公式分解因式的综合运用。过程与方法:会用平方差公式进行分解因式,并从中体验“整体”的思路,培养学生的“换元”意识,培养学生的化归思想。情感态度与价值观:培养学生的观察、比较和判断能力,提高综合运用提取公因式法与公式法的能力。二、教学重点: 运用平方差公式分解因式。三、教学难点:对需要综合运用提取公因式法与运用平方差公式的多项式进行因式分解的灵活
10、运用。四、教学过程设计:问题与情境设计师生活动设计情景引入1.对于等式x2+x =x (x+1)(1) 如果从左到又看,是一种什么变形?什么是因式分解?这种因式分解的方法叫什么?(2) 如果从右往左看,即x(x+1)=x2+x是一种什么变形?2.你能将多项式x2-4 与多项式y2-25分解因式吗?这两个多项式有什么共同特点3.你能将多项式a2-b2进行因式分解吗?即a2-b2=()()教师提问,学生回答:(1)因式分解 。把一个多项式化成了几个整式的积的形式,像这样式子的变形叫做把这个多项式因式分解 。这种因式分解的方法叫提取公因式法. (2)整式乘法。能两个数的平方差能,a2-b2=(+b)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 提公因式法 新人 初中 级数 上册 第十五 公因式 精品 教案
链接地址:https://www.31ppt.com/p-2887263.html