函数的值域求法集锦.doc
《函数的值域求法集锦.doc》由会员分享,可在线阅读,更多相关《函数的值域求法集锦.doc(11页珍藏版)》请在三一办公上搜索。
1、函数的值域题型一:二次函数的值域例1 求的值域解答:配方法: 所以值域为例2 求在上的值域解答:函数图像法:画出函数的图像可知,,在时取到最小值,而在时取到最大值8,可得值域为。例3 求在上的值域解答:由函数的图像可知,函数的最值跟a的取值有关,所以进行分类讨论: 当时,对称轴在的左侧,所以根据图像可知,所以此时的值域为 当时,对称轴在与y轴之间,所以根据图像可知,所以此时的值域为 当时,对称轴在y轴与之间,所以根据图像可知,所以此时的值域为 当时,对称轴在的右侧,所以根据图像可知,所以此时的值域为题型二:指数、对数函数的值域例4 求的值域解答:复合形式用换元:令,则由例1可知,根据单调性,可
2、求出的值域为例5 求的值域解答:因为,所以,采用换元法,令,则则原函数变为,可以根据二次函数值域的求法得到值域为题型三:分式函数的值域例6 求函数的值域解法一:分离变量法,将分式中分子部分的变量分离出去。则可以换元,令,原函数变为,由反比例函数的性质可知,值域为解法二:反函数法,利用原函数的值域就是反函数的定义域,来求值域。令,则,得到,可知解法三:解析几何法。考虑数形结合,联想到分式表示两点间连线的斜率,则讲原函数写为,可以看成是两点连线的斜率,其中是动点,构成直线轨迹,则连线必须与相交,所以连线斜率不能是2,得到值域。例7 求函数在的值域解法一:分离变量之后采用函数图像法,令,原函数变为,
3、可以画出的图像,或者根据单调性直接可以得到值域为解法二:反函数法,将代入中,求解不等式,可以得到值域范围。解法三:解析几何法。,可以看成是两点连线的斜率,其中是动点,不再构成直线,而是构成在区间的线段,画出图像后观察可得斜率的范围为例8 求函数的值域解法一:分离变量法,令,原函数变为由均值不等式可知当,当,可以得到原函数的值域为解法二:判别式法,令,则,整理得关于的一元二次方程,满足方程有解,该方程的判别式可得,即函数的值域为解法三:解析几何法,可以看成是两点之间连线的斜率,而是动点,恰好构成的轨迹,由图像可以看出,连线斜率的范围从而得到函数的值域。例9 求函数在的值域解答:此题限制了定义域,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 值域 求法 集锦
链接地址:https://www.31ppt.com/p-2886678.html