基于F2812的数据采集系统设计.doc
《基于F2812的数据采集系统设计.doc》由会员分享,可在线阅读,更多相关《基于F2812的数据采集系统设计.doc(36页珍藏版)》请在三一办公上搜索。
1、基于F2812的数据采集系统设计摘要:本文设计的数据采集处理系统采用TMS320F2812作为核心处理器完成对模拟信号的采集和处理。这款DSP有丰富的片内外设,用它作为处理器进行电路设计,可以使电路结构设计简单,成本低廉、开发周期较短。系统选用USB作为和上位机通信的接口,实现处理数据的上传以及上位机对DSP的控制。采集到的数据经过DSP的处理后,通过USB上传到PC,由上层软件进行进一步的处理。此外,本文还给出了系统的主要流程图,并详细叙述了系统的软件设计和实现过程,包括系统的初始化,数据采集,模数转换模块,数据处理算法,数据通信及代码优化等。并详细介绍了作为通信接口的USB固件的开发流程。
2、关键词:数字信号处理器;数据采集;USB目 录1绪论41.1论文提出的背景和意义41.2DSP系统的构成及设计过程51.3论文研究的内容61.4论文的章节安排62系统的实现方案72.1采集处理系统分析72.2系统的器件选型82.2.1微处理器的选型82.2.2串型接口的选型112.2.3存储器的选型122.2.4其他器件的选型132.3本章小结133系统的硬件设计133. 1系统的前端数据采集133.1.1采用F2812自带的ADC模块133.2DSP的外围电路设计153.2.1电源电路153.2.2时钟电路163.2.3复位电路183.2.4JTAG电路设计193.3 F2812与存储器的接
3、口设计203.3.1F2812存储资源分配情况203.3.2外扩存储器接口设计223.4 F2812与68013的接口设计223.5本章小结234系统的软件设计234.1系统的开发环境234.1.1CCS开发环境234.1.2USB的固件开发环境254.2 DSP部分的软件设计254.2.1系统的初始化程序设计274.2.2A/D转换部分的软件实现284.2.3SCI部分软件设计304.2.4DSP与USB通信部分的软件控制程序314.2.5命令文件的编写及程序的优化324.3 USB部分的软件设计344.4本章小结36参考文献361绪论1.1论文提出的背景和意义随着微电子技术、计算机技术和通
4、信技术的迅猛发展,数字化已广泛深入地应用于现代国防,现代科技和国民经济的各个领域.在社会活动和个人生活中都随处可见。20世纪60年代以来,数字信号处理器(Digital Signal Processing,DSP)日渐成为一项成熟的技术,并在多项应用领域逐渐替代了传统模拟信号处理系统.传统的信号处理系统采用模拟技术进行设计和分析,处理设备和控制器采用模拟器件实现.与之相比,数字信号处理技术与设备具有灵活、精确、抗干扰能力强、设备尺寸小、速度快、性能稳定和易于升级等优点,所以目前大多设备采用数字技术设计实现1。数据采集是获取信息的基本手段,数据采集技术作为信息科学的一个重要分支,与传感器、信号测
5、量与处理、微型计算机等技术为基础而形成的一门综合应用技术,它研究数据的采集、存储、处理及控制等作业,具有很强的实用性。随着现代科学技术的发展和计算机技术的普及,告诉数据采集系统已应用于越来越多的场合,如通信、雷达、生物医学、机器人和语音等领域。数字信号处理器(DSP)是一种特别适合于各种数字信号处理运算的微处理器,也是嵌入式处理器的一种通常,嵌入式处理器包括微处理器、微控制器、数字信号处理器和单片机等。随着计算机和信息产业的告诉发展,特别是数字信号处理器的诞生与快速发展,使各种数字信号处理算法得以实施实现,使得数字信号处理学科在理论和方法上都获得了迅速发展。由于DSP 具有丰富的硬件资源,改进
6、的并行结构、告诉数据处理能力和强大的指令系统,它已经成为世界半导体产业中紧随微处理器与微控制器之后的又一个热点,在通信、航空、航天、国防、工业控制、网络及家用电器领域得到了广泛的应用。DSP芯片在的高速信号处理方面具有速度快、运算性能好等优点,内部采用改进的哈佛结构,使得微处理器 的并行处理能力大大增强2-4。而在计算机接口技术方面,通用串行总线(Universal Sraial Bus,简称USB)近几年得到了长足的发展。USB是一些PC大厂商如Microsoft、Intel等为了结局日益增加的PC外设与有限的主板插槽和端口之间的矛盾而制定的一种串行通信的标准,自1995年在Comdex上亮
7、相以来至今广泛地为各PC厂家所支持。现在生产的PC几乎都配备了USB接口,Microsoft的Window98、NT以及Linux、FreeBSD等流行操作都增加了对USB的支持。与其他通信接口比较,USB接口的最大特点是易于使用,这也是USB的主要设计目标。作为一种高速总线接口,USB适用于多种设备,如数码相机、MP3、播放机、高速数据采集设备等。易于使用还表现在USB接口支持热插拔,并且所有的配置过程都由系统自动完成,无需用户干预5。USB接口支持1.5MB/S(低速)、12MB/S(全速)和高达480MB/S(USB2.0规范)的数据传输速率,扣除用于总线状态、控制和错误监测等数据传输,
8、USB的最大理论传输速率仍达1.2MB/S或9.6MB/S,远高于一般的串行总线接口。1.2DSP系统的构成及设计过程DSP是一种具有特殊结构的嵌入式微处理器,为了达到快速数字信号处理的目的,DSP芯片一般具有哈佛结构的并行总县体系、流水线操作功能、快速的中断处理和硬件I/O支持、低开销循环及跳转的硬件支持、单周期硬件地址产生器、单周期硬件乘法器以及一套适合数字信号处理的指令集。如图1-1所示为一个典型的DSP系统框图46。抗混叠滤 波输入A/DDSP芯片D/A平滑输出输出图1-1典型的DSP应用系统输入信号首先进行带限滤波抽样,然后进行AD转换把模拟信号变换成数字信号。根据耐奎斯抽样定理,为
9、保持信息不丢失,抽样频率必须至少输入带限信号最高频率的2倍。图1-1给出的DSP应用系统模型是一个典型的模型,并不是所有的DSP系统都必须具有模型中的所有部件。例如语音识别系统在输出端并不是模拟信号而是识别结果,如数字、文字等。有的系统的输入信号本身就是一个数字信号,显然不必再进行模数变换了。图1-2 DSP系统的设计流程一个数字信号处理系统是电子技术、信号处理技术和计算机技术相结合的产物,系统设计通常分为信号处理部分和非信号处理部分。信号处理部分包括系统的输入和输出、数据的处理、各种算法的实现、数据显示和传输等,非信号处理部分则包括电源、结构、可靠性和可维护性等。如图1-2是DSP系统设计的
10、一般方法。系统的软件和硬件分别调试完成后,就可以将软件脱离开发系统而直接在应用系统上运行。当然,DSP系统的开发,特别是软件开发是一个需要反复进行的过程,虽然通过算法模拟基本上可以知道实时系统的性能,但实际上模拟环境不可能做到与实时系统环境完全一致,而且将模拟算法移植到实时系统时必须考虑算法是否能够实时运行的问题。如果算法运算太大不能在硬件上实时运行,则必须重新修改过简化算法。1.3论文研究的内容本论文研究如何以DSP(数字信号处理器)和USB(通用串行接口)为核心构建硬件系统平台,完成采集处理系统的核心设计。这些核心包括DSP、USB、存储器等,研究的主要内容在硬件上主要为核心组件的接口设计
11、,软件上包括数字信号处理算法、采集控制及驱动设计等。本文的研究主要包括以下几个方面:1对DSP技术进行广泛的学习和研究,了解各系列的DSP的结构及用途,根据论文需要选择高性价比的主处理器,本论文选择TI公司的TMS320F2812作为主处理器,熟悉该款数字处理器的结构、外设及各个模块的功能和各个寄存器的作用及构造。2了解通用串行借口(USB)的工作原理及通信协议,选择合适的USB接口芯片,本文选用了CYPRESS公司的CY68013A,了解该芯片的功能构造及外设引脚,熟悉USB固件程序进行调试。3根据论文需求和DSP芯片的硬件特点提出基于DSP的数据采集处理系统的总体设计方案。4在TI公司的C
12、ode Composer Studio 2.2 for C2000(ccs)下对TMS320F2812进行软件仿真,熟悉CCS的开发环境,在内部 进行一些算法调试工作。1.4论文的章节安排本论文共分为四章,各章的内容安排如下: 第一章概述了论文“基于DSP的数据采集处理系统的设计与实现”的提出和意义,并对所要研究的内容进行了总结。第二章从全局出发探讨了基于DSP的数据采集处理系统的总体设计方案,阐述了系统的工作原理,并根据系统的目标要求对核心处理器及外围器件的选型进行了分析。第三章介绍了采集处理系统的硬件电路设计,包括DSP电源电路、AD转换模块、时钟电路、复位电路、JTAG接口、DSP外部扩
13、展存储器的接口电路以及DSP和USB的接口电路等。第四章介绍了系统的软件流程图,并分成DSP设计和USB设计俩大部分对系统的软件实现方案进行了分析,并对DSP初始化以及DSP和USB的接口软件设计进行了详细的论述。2系统的实现方案2.1采集处理系统分析本数据采集处理系统采用内部有模数转换起的DSP作为主处理器,这是一种结构简单、功能强大、经济实用的多通道高速数据采集处理系统,不仅具有数据采集与传输功能,同时具有运动控制功能。它由机械运动、传感器、数据采集、数据处理等几个部分组成。它通过传感器部分将光学标记信号转化为电信号,再通过数据采集部分将电信号转化为数字信号,并由数字信号处理部分进行相应的
14、处理,根据采集到的数据结果来控制设备进行相应的运动,并且将采集处理后的结果传诵到计算机系统。根据设计要求,结合目前市场使用情况,本系统选用TI公司新近推出的专门用于控制领域的TMS320F2812。这是一款32位DSP芯片,它的体系结构是专为实时控制及实时信号处理而设计,其所配置的片内外设为本系统提供了一个理想的解决方案。其中它的通用12位16通路A/D电路、定时器、脉宽调制PWM电路、捕捉器、光电编码器、串行通信接口、看门够等片内外设为DSP应用于智能测控、电机控制、电力电子技术等领域提供了丰富的资源。传感器TMS320F2812步进电机电源SRAMUSB上位机信号调理图2-1系统的总体设计
15、框图本系统是一个高速信号采集处理系统,其基本结构如图2-1所示。系统的工作流程为:本数据采集处理系统通过USB接口接受PC机命令,进行数据采集与数据传输;启动步电机控制传感器采集数据然后变为电信号;再经过信号调理达到DSP的输入电压标准后,使用F2812芯片内部的模数转换模块(ADC)进行数据的采集及A/D转换;转换后的数据预先存储到片外的RAM中,再经DSP进行前端的数字信号处理后,通过USB总线传给上位机,并在上位机上进行存储、显示和分析。根据系统各部分的功能的不同,可将系统分为输入信号调理模块、数字信号处理模块和USB模块。期中输入信号调理模块主要是对被采集的模拟信号进行调理(如电平变换
16、和滤波),以满足数字电路对信号的要求;数字信号处理模块是对输入的电信号进行采集和处理,主要由DSP和一些必要的外设组成,DSP负责数据采集及一些实时处理,同时要完成系统的逻辑和时序控制;USB模块则将DSP处理完的结果传送到上位机上去进行显示、计算和分析。该系统完全可以满足信号采集处理对高精度及实时性的要求,由于系统的数据量较大,因此需要一种高速的数据传输方式,而USB2.0总线传输速度快,能达到480Mbit/s的速度,满足了本系统数据传输的需要。该系统要求采样的精度到8位数字量,用F2812自带的ADC模块就可达到很好的效果,省去了专用的ADC芯片,使系统的时序控制变得简单,从而降低了系统
17、的复杂性,也节约了成本。2.2系统的器件选型本系统设计的目的在于开发体积小、成本低的采集处理系统。所以在满足系统要求的前提下,在器件选择方面尽可能减少系统资源的冗余,提高系统的集成度。2.2.1微处理器的选型目前的微处理器分为通用处理器、单片机和DSP三大类。DSP与单片机、传统的通用微处理器相比具有很大的优越性。与目前普遍采用的单片机相比,DSP具有较高的集成度并具有更快的运行速度,DSP器件比16位单片机单指令执行时间快810倍,在乘法处理上,DSP的优势更为明显,完成一次乘累加运算快1630倍。这一性能决定了DSP的应用领域主要集中在较复杂的算法处理中,如:数字图象处理、数字语音编码等领
18、域,而单片机则主要用于工业控制等对处理速度和处理性能要求较抵的环境7。DSP芯片也称数字信号处理器,是一种特别适合于进行数字信号处理运算的微处理器,其主要应用是实时快速的实现各种数字信号处理算法。DSP芯片是实现数字信号处理技术的硬件支持,是数字信号处理技术与数字信号处理应用之间的桥梁和纽带,随着全球集成电路事业的发展,美国的TI公司成为世界上最大的DSP芯片供应商,其DSP市场份额占全世界份额近50%,其DSP产品根据功能氛围三个系列TMS320C2000系列,TMS320C5000系列,TMS320C6000系列,本系统选用的就是TI的2000系列的TMS320F2812芯片。随着信息技术
19、的不断发展DSP必将得到更加广泛的应用。通用DSP芯片一般具有如下主要特点8-10:1多总线结构。世界上最早的微处理器是基于冯诺伊曼结构的,其取指令、取数据都是通过同一条总线完成的,因此必须分时进行,在高速运算时,往往传输通道上会出现瓶颈效应。而DSP内部采用的哈佛(Harvard)结构,它在片内至少有四套总线;程序地址总线、程序数据总线、数据的地址总线和数据的数据总线。这中分离的程序和数据总线,可允许同时获得来自成局存储器的指令字和来自数据存储器的操作数而互不干扰,这样使得其可以同时对数据和程序进行寻址。2指令系统的流水线操作。在改进的哈佛结构的基础上,大多数DSP芯片又引入了流水线操作以减
20、少每条指令的执行时间,从而进一步增强处理器的楚剧处理能力。在执行本条指令的同时,下面的指令已依次完成取操作数、解码、去指令操作,从而在不提高时钟频率的条件下减少了每条指令的执行时间。3专用硬件乘法器。硬件乘法器功能是DSP实现快速运算的重要保障。在一般计算机上,算术逻辑单远(ALU)只能完成俩个操作数的加、减法及逻辑运算,而乘法(或除法)则由加法和移位来实现。而DSP器件配有独立的乘法器和加法器,单个周期可以完成相乘、累加俩个运算,大大提高了运算效率。4快速的指令周期。CMOS技术、先进的工艺及集成电路的优化设计、工作电压的下降(5V,3.3V,1.8V),使得DSP芯片的主频不断提高。目前C
21、64DSP高速时钟已达1.1GHZ。随着微电子技术的发展以近RISC设计思想在DSP芯片设计和生产中的全面体现,工作频率将继续提高,指令周期进一步缩短。DSP的选型主要考虑处理速度、功耗、程序存储器和数据存储器的容量、片内的资源,如定时器的数量、I/O口的数量、中断数量、DMA通道数等。DSP的主要供应商有TI,ADI,Motorola,Lucent和Zilog等,其中TI占有最大的市场份额。而TMS320F281x系列数字信号处理器是TI公司最新推出的数字信号处理器,该处理器是基于TM320C2xx内核的定点数字信号处理器11。器件上集成了多种先进的外设,代码和指令与F24x系列数字信号的处
22、理器完全兼容。F28x系列数字信号处理器提高了运算精度(32位)和系统的处理能力(达到150MIPS)下面列出TMS320F2812的主要特征:1采用高性能静态CMOS技术,主频达到150MHZ(时钟周期6.67ns),1.9V核心低电压设计。2高性能32位CPU,哈佛总线结构,4MB的程序/数据寻址空间。3存储空间:18k16位0等待周期片上SRAM和128K16位片上FLASH(存储时间36ns);3个独立的片选信号,最多1MB的寻址空间。4丰富的片内外设:俩个事件管理器EVA和EVB,每个事件管理器模块包括定时器、比较器、捕捉单元、PWM逻辑电路、正交编码脉冲电路以及中断逻辑电路等;一个
23、模数转换模块ADC(Analog-to-Dignal Converter);3个32位的CPU定时器;2个异步串行通信接口SCI(Serial Communications Interface);一个高速同步串行口SPI(Serial Peripheral Interface);最高通信速率可达到1Mbps的增强型CAN接口(Enhanced Controller Area Network);多通道缓冲串行接口McBSP(Multichannel Buffered Serial Port);56个通用目的数字量I/O即GPIO模块;一个IEEE1149.1标准JTAG接口(仿真接口);5三个外
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 F2812 数据 采集 系统 设计

链接地址:https://www.31ppt.com/p-2883366.html