油水界面测量软件设计.doc
《油水界面测量软件设计.doc》由会员分享,可在线阅读,更多相关《油水界面测量软件设计.doc(60页珍藏版)》请在三一办公上搜索。
1、密 级学 号070233 毕 业 设 计(论 文) 题目:油水界面测量软件设计院(系、部):机械工程学院姓 名:班 级:测071专 业:测控技术与仪器指导教师:张宝生教师职称:副教授 2011年 06 月 12 日北京北京石油化工学院 学位论文电子版授权使用协议论文 油水界面测量软件设计 系本人在北京石油化工学院学习期间创作完成的作品,并已通过论文答辩。 本人系作品的唯一作者,即著作权人。现本人同意将本作品收录于“北京石油化工学院学位论文全文数据库”。本人承诺:已提交的学位论文电子版与印刷版论文的内容一致,如因不同而引起学术声誉上的损失由本人自负。本人完全同意本作品在校园网上提供论文目录检索、
2、文摘浏览以及全文部分浏览服务。公开级学位论文全文电子版允许读者在校园网上浏览并下载全文。注:本协议书对于“非公开学位论文”在保密期限过后同样适用。 院系名称: 机械工程学院 作者签名: 学 号: 070233 2011 年 6 月 19北 京 石 油 化 工 学 院毕 业 设 计 (论 文)任 务 书学院(系)机械工程学院 专业 机械设计制造及其自动化 班级 学生姓名 指导教师/职称 张宝生/ 副教授 1.毕业设计(论文)题目油水界面测控软件设计2.任务起止日期:2011年 2月21日 至 2011年6月10日3. 课题简介油田生产现场迫切需要测量精度高,抗干扰能力强的油水界面监测仪,现有的仪
3、表均不够理想,目前我国应用在原油储罐(特别是一次沉降罐) 和污水处理中的油水界面仪不能完全满足现场的要求,迫切需要研究能适应油田现场需要的油水界面检测技术。通过油水界面测控软件的设计,了解油水界面测量的方法和工作原理,掌握分段电容信号测量和采集电路的设计,掌握使用计算机数据采集系统采集不同状态下的油水乳化液电信号的方法,了解分析和研究信号的方法,探索解决准确测控油田生产现场油水界面问题的途径,有利于培养学生的工程设计能力和科研能力,题目与学生的专业学习内容联系紧密,工作量适中。4. 主要内容与要求(含原始数据及应提交的成果)主要参数:(1)采用A36W-1.2M-F-A-EX型油水界面测量仪
4、(2)迪阳公司型号为DYUSB2008多功能采集卡。(3)采用Visual Basic语言。应提交:(1)毕业实习日记、报告;(2)开题报告;(3)2万字符的外文翻译和英文资料;(4)毕业设计论文,包括中文综述、设计详细说明书;(5)油水界面计算机数据采集软件和源程序;(6)油水界面测量实验数据5.主要参考文献(1) MCGS组态软件教程(2)A36W-1.2M-F-A-EX型油水界面测量仪使用手册和相关协议 (3)迪阳公司型号为DYUSB2008多功能采集卡使用光盘资料6.进度计划及指导安排(1) 第3周完成文献综述、外文翻译、开题报告初稿,检查所查文献资料,应查阅25篇以上,英文5篇(2)
5、 第4周学生完成开题报告,总体方案,并将开题报告上传至管理系统,进行开题报告答辩(3) 第7周中期检查:文献综述,外文翻译,教师指导记录,学生工作日记,阶段设计结果(初步的图纸、论文、程序、实验数据等),学院根据管理系统强化管理并抽查部分学生。(4) 第13周完成详细设计、图纸绘制、程序调试和论文等,检查所有毕业设计资料并修改(5) 第14周周五之前上交所有毕业设计(论文)资料,机械工程学院教学委员会对所有毕业设计(论文)答辩资格审查,审查通过后,方可参加第一次答辩。(6) 第15-16周,准备PPT,答辩。任务书审定日期 年 月 日 系(教研室)主任(签字) 任务书批准日期 年 月 日 教学
6、院(部、系)院长(签字) 任务书下达日期 年 月 日 指导教师(签字) 计划完成任务日期 年 月 日 学生(签字) 摘 要在原油生产过程中,从油井中开采出来的原油是含有一定水分的,由于油和水的比重不同,原油中的水分会沉降在油罐底部,需要输送到分离罐中进行油水分离,加工处理成低含水率的成品原油,而原油储罐内油水界面高度是保证油水分离正常运行的重要参数。 本文通过分析了国内外油水界面检测技术,利用原油、水、乳化液在介电常数上的不同用电容传感器来实现原油分离罐内油水界面的在线检测,本文详细介绍了采用MCGS组态软件设计系统可视化控制的设计思想、流程,用户登录界面、主控制界面、设备界面、显示界面、实时
7、数据库以及运行策略界面的编制,油水界面实时监测功能的实现过程,实验过程中测量数据的记录。关键词:油水,界面检测,MCGSAbstract In the production process of crude oil, the crude oil exploited from the oil well has certain moisture content, because the specific gravity of oil and water is different, the water in the crude oil will subside to the base of oil
8、tank, and must be separated from the water in separation tank and finished crude oil with low water can be gotten. At the same time, the height of oil-water interface is the most important parameter which ensures the oil-water separation.This paper analyzesthe domestic and internationaloil-waterinte
9、rface detection technology. using thecapacitance sensors to detection the different of thedielectric constant in oil, water, emulsion to achieve the line detection of oil-water interface in crude oilseparation tank.Describled the design by using MCGS configuration software to achieve visualizationco
10、ntrol, configurationprocess and softwarefunctionality in detail.As well as the draw of Userlogin, The maincontrol interface, Device Interface,Display Interface,Real-time database,Operating Strategy.The implementation process of oil-water interface real-time monitoring. Experimentmeasurement datareco
11、rds.key words: oil-water , interface detection ,MCGS目 录第一章 绪 论11.1 研究背景及意义11.2 国内外油水界面检测技术研究现状21.2.1 国外研究状况21.2.2 国内研究状况31.3 本文的主要设计内容10第二章 系统整体方案设计112.1 总体设计方案选择112.2 总体方案设计流程112.3油水界面系统及其实现的功能122.4课题的研究方法及问题处理122.4.1课题研究方法122.4.2 研究中出现问题的解决方案132.5本章小结13第三章 油水界面系统硬件简介143.1 界面检测仪143.1.1界面检测仪概述143.1.
12、2界面检测仪性能参数143.1.3界面检测仪的基本原理153.2分段电容传感器163.3 转换串口173.3.1 转换串口概述173.3.2 转换串口性能参数183.4 本章小结18第四章 油水界面系统软件设计194.1 MCGS软件简介194.2 界面设计214.2.1建立新工程214.2.2实时数据库设置224.2.3油水分离界面编制234.2.4 设备窗口设置264.2.5 运行策略设置284.3 通讯协议介绍294.4油水界面分离算法研究304.5本章小结33第五章 实验结果分析345.1纯水的测量实验345.2纯油的测量实验365.3油水的混合测量实验375.4 实验误差分析385.
13、5 本章小结39第六章 结论与展望406.1 结论406.2 展望40参 考 文 献41致 谢43附 录44声 明51第一章 绪 论1.1 研究背景及意义石油作为现代工业社会应用最为广泛的能源物质之一,被喻为是现代工业社会的“血液”,石油工业的发展极大的影响了整个国民经济的发展。然而石油从开采出来到分离、提炼,再到工业、生活的生产、消费却是一个极其复杂的过程,仅原油的开采就是一道纷繁复杂的工序。一般情况下,随着原油的开采,油井内会伴随有大量的水和气同时产出,即实际开采出来的原油是油、气和水的混合物,甚至还会伴随有少量的泥沙。特别是到了油田开采的中后期,原油不能像初期开采时那样,在岩石下受到很大
14、的压力自己就喷出来。为了解决这一问题,通常采用向油田内注水,使枯竭油层的原油漂浮起来同时增大压力进行开采。然而这种方法的缺点是开采出的原油的含水率一般都很高,需要采取工艺处理除去其中的气、水和泥沙等杂质。一般来说,除去泥沙和气体是比较容易的,而除去其中的水却是一个相对比较复杂的过程,油水分离技术就应运而生。在油田生产过程中,油水分离是原油加工中极为重要的环节。而从原油进入联合站以后,要经过诸如沉降、电脱等处理过程水界面控制是分离效果的关键,油田生产的基本工艺流程如下:当原油开采出来后,先送到采油计量站进行计量,再进入联合站。在联合站,经过计量、加热,然后将原油送至一级沉降罐(在一级沉降罐内原油
15、常年保持在60 左右),经过沉降分离后送至中间罐,经过脱水泵脱水,再经过二次加热进入二级沉降罐(在二级沉降罐内原油常年保持在80 左右),分离后的原油进入电脱水器进行最后的处理,达到含水率标准(0.5%) 后,最后送到成品油储罐。在整个过程中,都需要进行油水界面的测量。而油水界面的准确监测对油品的含水率、污水回收及处理成本都是极为关键的。由于原油的生产过程中面临着这样的一个难题,特别是在原油的采收和储运过程中,油中的水分会沉降在储油罐的底部,占据大量的容积。因此,只有随时将储油罐中的水排出去,才能够充分利用储油罐的容量,处理成低含水率的成品原油。因而,必须将开采出来的油水混合物送入油水分离罐中
16、静置一定的时间,由于油和水的比重不同,在重力的作用下,混合物中的小水滴将会汇聚成大水珠,进而沉淀到分离罐的底部,其中的油层则浮于水层的上面,再通过对分离灌内水层和原油层的分别引出,就实现了油水分离的目的。在这个过程中,对原油层和水层分界面的检测非常重要。国外虽然有较成型的仪器,但其昂贵的价格令人望而却步。如今国内许多油田依然采用原始的人工方法进行检测,劳动效率非常低下。国内先后也开发出多种不同形式的油水界面检测仪器,投入使用后,虽然取得了一定的效果,但由于工艺和技术水平等各方面的原因,其稳定性、准确性、实时性、可靠性及成本情况难以适应国内原油生产的实际要求。因此,针对国内原油生产的特点,研究出
17、适合国内原油的油水界面检测技术,开发出高品质的仪器仪表,使国内原油分离灌内油水界面的测量技术迈入一个新台阶,具有重要的社会意义和经济意义。油水界面的检测是原油的开采、脱水、集输、计量、销售、炼化等过程中的重要环节。因此,在油田原油的生产和储运过程中,都要求对储油罐中的油水界面进行检测。准确地对原油储油罐内油水界面进行检测,及时地反映原油储罐中油水界面的状态,对管理部门减少能耗、降低成本、实现油田的自动化管理起着重要作用。准确地检测油罐内油水界面是实现原油分离灌自动放水的重要保障,也是储运系统管理和计算原油储量的主要依据,在自动化技术中占有着重要的位置。油水界面检测技术,在原油的开采、加工、储运
18、等过程中都起着重要作用。为了满足油田现场生产的实际需要,迫切需要结合国内原油的特点和生产实际,将高新技术引入到原油储罐内油水界面检测的研究开发中,研制出新型、准确度高、稳定性好的高品质油水界面检测仪器,从而解决目前各种油水界面检测过程中存在的问题,从根本上提高我国油水界面的检测技术水平。1.2 国内外油水界面检测技术研究现状1.2.1 国外研究状况在19世纪末20世纪初,国外就己经出现了关于油水分离的理论。60年代末至80年代初,国外主要研制和使用的是各种钢带浮子液位计,大多都是对每个油罐进行独立安装,现场显示,这类仪表的主要缺点是机械摩擦影响了计量精度,浮子在滑动杆上容易被敷住。随着对计量精
19、度要求的不断提高,出现了伺服式液位计,由于其使用了伺服马达,消除了因机械摩擦而引起的误差,提高了灵敏度,其液位的计量精度也得到极大地提高。这一时期的典型产品是美国VAREC公司生产的2500型钢带浮子液位计和6500型伺服式液位计,荷兰NRAF公司的SH型伺服动力液位计等。德国的ENRAF一ONIUS公司于80年代末期推出了串式电容物位测量系统,该系统采用多级串式电容液位传感器。90年代中期,曼彻斯特理工大学的电子工程系成功地研制出了分段电容阵列法,这种方法的电容传感器不但对传感器的制作工艺要求很高,而且对安装维护的要求也很高。近几年,美国研制出了磁致伸缩液位计,这种传感器同时可以测温,具有很
20、高的测量精度,但是它的致命缺点是不适合测量粘稠的原油。1.2.2 国内研究状况在国内,由于起步比较晚,油水分离技术依然处于初始的研究阶段,目前依然普遍采用传统的重力油水分离方法。重力分离法原理简单、成本低,目前不但在国内,在世界上也是最主要的油水分离方法。重力法的关键技术和难点在于原油与水的界面检测技术,即油水界面检测技术。虽然油水界面检测技术发展了很多年。但是,由于原油与水混合物成分的复杂性,到目前为止还没有可以十分有效地应用于国内各油田的产品推出。近些年随着大庆油田等国内大型油田都己经临近了枯油期,原油中的水分含量也越来越高,油田迫切需要能有效地解决油水分离的一种技术,因此不断地加大对该技
21、术的资金投入,同时业内人士们的不断关注和油水界面检测技术的不断发展,推动了油水界面检测技术的迅速发展。目前,已有不少可以小规模应用于特定油田的技术出现,并且也相继出现了一批专门制造这一类检测仪器的公司,如北京创新思成科技有限公司、山东力创、兰州科庆仪表公司等。而且检测手段和方法也得到了长足的发展,目前,不但有传统的电容式和浮球式等,射频技术和光纤技术等新技术也开尝试应用于油水界面的检测,已经取得一定成果。1.3界面测量仪器分类目前油田含油废水处理的重要性日益受到关注与重视,污水中的油的再次分离回收以及提高污水的排放指标已成为重要的能源问题和环境问题。在原油脱水与生产过程中,原油储罐动态油水界面
22、的准确测量关系到净油外输含水率的控制和联合站盘库系统的精确度。由于原油储罐油和水可以组成不同形态的油水乳化液,在界面处形成一个乳化带,乳化带的宽度和状态是随机变化的,而普通的界面仪无法准确测量油水界面和乳化带的宽度。另外,乳化带是一个随机的、复杂的过渡带,含水率、沥青的浓度、矿物质的含量、界面的弹性 、压力等参数都会影响该过渡带的稳定性。由于上述原因,在原油生产过程中,原油储罐油水界面的准确检测一直没有很好的方法。目前很多原油储罐仍然使用手工检测界面,通过测量电导率的变化确定油水界面的位置,但此方法只能大致估计油水界面的位置和乳化带宽度。这个问题一直没有得到很好的解决。下面介绍各种界面分离仪器
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 油水 界面 测量 软件设计

链接地址:https://www.31ppt.com/p-2881613.html