03826MSA 测量系统研究.ppt
《03826MSA 测量系统研究.ppt》由会员分享,可在线阅读,更多相关《03826MSA 测量系统研究.ppt(174页珍藏版)》请在三一办公上搜索。
1、MeasurementSystem Analysis,明基电通 陈军,课程内容(基础篇),MSA的重要性测量系统分析的对象测量系统误差来源测量基础术语 测量系统统计特性理想的测量系统测量系统应有的特性测量系统变异性的影响测量系统策划,课程内容(方法篇),测量系统研究准备计量型分析稳定性分析偏倚分析控制图法偏倚分析独立样本法线性分析指南重复性和再现性分析指南计数型分析风险分析法解析法复杂或非重复的测量系统的实践通过多数读数减少变差,MSA 的重要性,如果测量的方式不对,那么好的结果可能被测为坏的结果,坏的结果也可能被测为好的结果,此时便不能得到真正的产品或过程特性。,PROCESS,原料,人,機
2、,法,環,測量,測量,結果,好,不好,測量,MSA分析的对像,QS-9000 4.11.4为分析再各种测量和实验设备系统测量结果中表现的变差,必须进行适当的统计研究。此要求必须用于在控制计划中提及的测量系统。此项要求就是包含控制计划中提及的产品特性和过程特性。,测量误差,y=x+测量值=真值(True Value)+测量误差,戴明说没有真值的存在,一致性,测量误差来源,量測系統的組成,量具:任何用來獲得測量結果的裝置。量測系統:量具(equipment)量測人員(operator)被量測工件(parts)程序、方法(procedure,methods)上述之交互作用關係,测量误差的来源,仪器方
3、面:Discrimination(分辩力)Precision 精密度(Repeatability 重复性)Accuracy准确度(Bias偏差)Damage损坏Differences among instruments and fixtures(不同仪器和夹具间的差异),量測系統所造成之誤差來自,被量測工件之間的差異 p執行量測之不完整性 e(同一工件重複量測,得不到同一數據)量測者之間,量測技術的差異 o,量測系統誤差之分類,準確度之誤差(Accuracy)X 量測實際值與工件真值間之差異精密度之誤差(Precision)利用同一量具,重複量測相同工件同一品質特性,所得數據之變異性。,儀器量
4、測之準確度與精密度,準確度,精密度,高,低,高,低,测量误差的来源,不同检验者的差异Difference in use by inspector(Reproducibility再现性)训练技能疲劳无聊眼力舒适检验的速度指导书的误解,测量误差的来源,不同环境所造成的差异(Differences due to environment)温度湿度振动照明腐蚀污染(油脂),测量误差的来源,方法方面:Differences among methods of use测试方法测试标准材料方面:准备的样本本身有差异收集的样本本身有差异,测量基础术语,关于测量,测量:赋值给具体事物以表示它们之间关于特定特性的关系
5、。赋值过程即为测量过程,而赋予的值定义测量值。量具:任何用来获得测量结果的装置,经常用来特指用在车间的装置,包括用来测量合格不合格的装置。测量系统:用来对被测特性赋值的操作、程序、量具、设备、软件以及操作人员的集合;用来获得测量结果的整个过程。,数据,一组条件下观察结果的集合,既可以是连续的(一个量值和测量单位)又可以是离散的(属性数据或计数数据如成功失败、好坏、过不通过等统计数据)。,标准,用于比较的可接受的基准;用于接受的准则;已知数值,在表明的不确定度界限内,作为真值被接受;基准值。,准确度,观测值和可接受基准值之间一致的接近程度。,校准,在规定的条件下,建立测量装置和已知基准值和不确定
6、度的可溯源标准之间的关系的一组操作。校准可能也包括通过调整被比较的测量装置的准确度差异而进行的探测、相关性、报告或消除的步骤。,校准周期,两次校准间的规定时间总量或一组条件,在此期间,测量装置的校准参数被认定为有效的。,分辨力、可读性、分辨率,最小的读数单位、刻度限度;由设计决定的固有特性;测量或仪器输出的最小刻度;1:10经验法则(过程变差与公差较小者)。,量具R&R,一个测量系统的重复性和再现性的合成变差的估计。GRR变差等于系统内和系统间变差之和。,测量系统误差,用于量具偏倚、重复性、再现性、稳定性和线性产生的合成变差。,不可重复性,由于被测体的动态性质决定的对相同样本或部件重复测量的不
7、可能性。(例流动的河水),零件变差,与测量系统分析有关,对一个稳定过程零件变差(PV)代表预期的不同零件和不同时间的变差。,概率,以已收集数据的特定分布为基础,描述特定事件发生机会的一种估计(用比例或分数)。概率估计值范围从0(不可能事件)到1(必然事件)。,过程控制,一种运行状态,将测量目的和决定准则应用于实时生产以评估过程稳定性和测量体或评估自然过程变差的性质。测量结果显示过程或者是稳定和”受控”,或者是”不受控”。,产品控制,一种运行状态,将测量目的和决定准则应用于评价特性符合某规范。测量结果显示过程或者是”在公差内”或者是”在公差外”。,灵敏度,导致一个测量装置产生可探测(可辨别)输出
8、信号的最小输入信号。一个仪器应至少和其分辨力单位同样敏感。敏感性是通过固有量具的设计与质量、服务期内维护和操作条件确定的。,溯源性,在商品和服务贸易中溯源性是一个重要概念,溯源到相同或相近的标准的测量比那些没有溯源性的测量更容易被认同。这为减少重新试验、拒收好的产品、接收坏的产品提供了帮助。溯源性在ISO计量学基本和通用国际术语(VIM)中的定义是”测量的特性或标准值,此标准是规定的基准,通常是国家或国际标准,通过全部规定了不确度的不间断的比较链相联系。,溯源示例,夹量具,千分尺,CMM,量块,激光干涉仪,引用量具量块比测,波长标准,干涉比测器,真值,测量过程的目标是零件的”真”值,希望任何单
9、独读数都尽可能地接近这一读值(经济地)。遗憾的是真值永远也不可能知道是肯定的。然而,通过使用一个基于被很好地规定了特性操作定义的”基准”值,使用较高级别分辨率的测量系统的结果,且可溯源到NIST,可以使不确定度减小。因为使用基准作为真值的替代,这些术语通常互换使用。,一致性,一致性是随时间得到测量变差的区别。它也可以看成重复性随时间的变化。影响一致性的因素是变差的特殊原因,如:零件的温度电子设备的预热要求设备的磨损,均匀性,均匀性是量具在整个工作量程内变差的区别。它也可被认为是重复性在量程上的均一性(同一性)。影响均匀性的因素包括:夹紧装置对不同定位只接受较小较大尺寸。刻度的可读性不好读数视差
10、,测量不确定度,不确定度是赋值给测量结果的范围,在规定的置信水平内描述为预期包含有真测量结果的范围。测量不确定度通常被描述为一个双向量。简单的表达式:真测量值=观测到的测量(结果)UU=扩展不确定度。扩展不确定度是测量过程中合成标准误差Uc,乘以一个代表所希望的置信范围中的正态分布的分布系数(K)。ISO/IEC确定了足以代表正态分布的95%的不确定度的分布系数。通常认为K=2,U=KUc。,测量不确定度,扩展不确定度 U=kuc公式K覆盖因子(2-3)uc 标准合成不确定度,测量不确定度,合成标准误差Uc包括了在测量过程中变差的所有重要组成部份。在大多数情况下,按着本手册完成的测量系统分析的
11、方法可以用来定量确定测量不确定度的众多来源。简单的表达式被定量表示为:Uc2=2偏倚+2GRR+2稳定性+2一致性+2其它定期重复评价与测量过程有关的不确定度以确保持续保持所预计的准确度是适宜的。,测量不确定度和MSA区别,测量不确定度和MSA的主要区别是:MSA的重点是了解测量过程,确定在测量过程中的误差总量,及评估用于生产和过程控制中的测量系统的充份性。MSA促进了解和改进(减少变差)。不确定度是测量值的一个范围,由置信区间来定义,与测量结果有关并希望包括测量真值。,不确定度和测量误差区别,测量值概率分布曲线,均值,+3,+3,真值,1,测量误差,不确定度范围,测量系统统计特性,测量系统的
12、统计特性,Bias偏差(Accuracy准确性)Repeatability重复性(precision)Reproducibility再现性Linearity线性Stability稳定性,偏倚(Bias),偏倚:是测量结果的观测平均值与基准值的差值。真值的取得可以通过采用更高等级的测量设备进行多次测量,取其平均值。,造成过份偏倚的可能原因,仪器需要校准仪器、设备或夹紧装置的磨损磨损或损坏的基准,基准出现误差校准不当或调整基准的使用不当仪器质量差设计或一致性不好线性误差应用错误的量具,不同的测量方法设置、安装、夹紧、技术测量错误的特性量具或零件的变形环境温度、湿度、振动、清洁的影响违背假定、在应用
13、常量上出错应用零件尺寸、位置、操作者技能、疲劳、观察错误,重复性(Repeatability),重复性,指由同一个操作人员用同一种量具经多次测量同一个零件的同一特性时获得的测量值变差(四同),重复不好的可能原因,零件(样品)内部:形状、位置、表面加工、锥度、样品一致性。仪器内部:修理、磨损、设备或夹紧装置故障,质量差或维护不当。基准内部:质量、级别、磨损方法内部:在设置、技术、零位调整、夹持、夹紧、点密度的变差评价人内部:技术、职位、缺乏经验、操作技能或培训、感觉、疲劳。,环境内部:温度、湿度、振动、亮度、清洁度的短期起伏变化。违背假定:稳定、正确操作仪器设计或方法缺乏稳健性,一致性不好应用错
14、误的量具量具或零件变形,硬度不足应用:零件尺寸、位置、操作者技能、疲劳、观察误差(易读性、视差),再现性(Reproducibility),由不同操作人员,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的变差(三同一异),再现性,再现性不好的可能潜在原因,零件(样品)之间:使用同样的仪器、同样的操作者和方法时,当测量零件的类型为A,B,C时的均值差。仪器之间:同样的零件、操作者、和环境,使用仪器A,B,C等的均值差标准之间:测量过程中不同的设定标准的平均影响方法之间:改变点密度,手动与自动系统相比,零点调整、夹持或夹紧方法等导致的均值差,评价人(操作者)之间:评价人A,B,C等的训练、
15、技术、技能和经验不同导致的均值差。对于产品及过程资格以及一台手动测量仪器,推蕮进行此研究。环境之间:在第1,2,3等时间段内测量,由环境循环引起的均值差。这是对较高自动化系统在产品和过程资格中最常见的研究。违背研究中的假定仪器设计或方法缺乏稳健性操作者训练效果应用零件尺寸、位置、观察误差(易读性、视差),稳定性(Stability),稳定性,时间1,时间2,是测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。,穩定性(Stability)穩定性是指量測系統在某持續時間內,量測同 一基準或零件的“單一特性”時,所獲得的 測量值之總變差。,時間 2,時間 1,穩定性,不稳定的
16、可能原因,仪器需要校准,需要减少校准时间间隔仪器、设备或夹紧装置的磨损正常老化或退化缺乏维护通风、动力、液压、过滤器、腐蚀、锈蚀、清洁磨损或损坏的基准,基准出现误差校准不当或调整基准的使用不当,仪器质量差设计或一致性不好仪器设计或方法缺乏稳健性不同的测量方法装置、安装、夹紧、技术量具或零件变形环境变化温度、湿度、振动、清洁度违背假定、在应用常量上出错应用零件尺寸、位置、操作者技能、疲劳、观察错误,線性是指量具在預期作業範圍內偏倚值的差異。與儀器所使用於作業量測範圍(長度)有關。,基準值,較小的偏倚,基準值,較大的偏倚,量測平均值(低量程),量測平均值(高量程),基準值,量測值,無偏倚,偏倚,線
17、性(變化的線性偏倚),线性(Linearity),线性误差的可能原因,仪器需要校准,需减少校准时间间隔;仪器、设备或夹紧装置磨损;缺乏维护通风、动力、液压、腐蚀、清洁;基准磨损或已损坏;校准不当或调整基准使用不当;仪器质量差;设计或一致性不好;,仪器设计或方法缺乏稳定性;应用了错误的量具;不同的测量方法设置、安装、夹紧、技术;量具或零件随零件尺寸变化、变形;环境影响温度、湿度、震动、清洁度;其它零件尺寸、位置、操作者技能、疲劳、读错。,Case study(应选用什么类型仪器),基准值,观测平均值,基准值,观测平均值,基准值,观测平均值,理想的测量系统,理想的测量系统在每次使用时,应只产生“正
18、确”的测量结果。每次测量结果总应该与一个标准值相符。一个能产生理想测量结果的测量系统,应具有零方差、零偏倚和所测的任何产品错误分类为零概率的统计特性。,IDEAL MEASUREMENT SYSTEM,真值,真值,足够的分辨率和灵敏度。为了测量的目的,相对于过程变差或规范控制限,测量的增量应该很小。通常所有的十进制或10/1法则,表明仪器的分辨率应把公差(过程变差)分为十份或更多。这个规则是选择量具期望的实际最低起点。测量系统应该是统计受控制的。这意味着在可重复条件下,测量系统的变差只能是由于普通原因而不是特殊原因造成。这可称为统计稳定性且最好由图形法评价。,测量系统应有的特性,测量系统应有的
19、特性,对产品控制,测量系统的变异性与公差相比必须小于依据特性的公差评价测量系统。对于过程控制,测量系统的变异性应该显示有效的分辨率并与过程变差相比要小。根据6变差和或来自MSA研究的总变差评价测量系统。,偏倚、重复性、再现性、线性可接受,测量系统变异性影响,测量系统变异性的影响,对产品决策的影响,TYPE I误差,将好的判成坏的。其平均值是落在合格区的,但由于GRR的影响可能会将其判成不合格的。,LSL,USL,对产品决策的影响,TYPE II误差,将坏的判成好的。其平均值是落在不合格区的,但由于GRR的影响可能会将其判成合格的。,LSL,USL,对产品决策的影响,相对于公差,对零件做出错误决
20、定的潜在 因素只在测量系统误差与公差交叉时存在,下面给出三个区分的区域。,LSL,USL,I,II,II,I,III,Bad is bad,Bad is bad,Good is good,Confused area,Confused area,对产品决策的影响,对于产品状况,目标是最大限度地做出正确决定,有二种选择:改进生产区域:减少过程变差,没有零件产生在II区。改进测量系统:减少测量系统误差从而减小II区域的面积,因而生产的所有零件将在III区域,这样就可以最小限度地降低做出错误决定的风险。,对过程决策的影响,对于过程控制,需要确定以下要求统计受控对准目标可接受的变异性。把普通原因报告为特
21、殊原因把特殊原因报告为普通原因测量系统变异性可能影响过程的稳定性、目标以及变差的决定。,GRR对能力指数Cp的影响,GRR对能力指数Cp的影响,例题,如果目前有一个制程其观察的Cpo=1.67,而其GRR=0.2,请试算其真实的Cpa=?解,新过程的接受,Cpa=2.0,GRR=0.1,Cpo=1.96,Cpa=2.0,GRR=0.3,Cpo=1.71,新过程的接受,最坏的假想情况是如果生产用量具不具备资格却被使用了。如果假设GRR=60%(但不知道事实)那么观测的Cp就是1.2了,此时如果不知道是仪器问题,而在寻找制程问题,就会白费努力了。,Cpa=2.0,GRR=0.6,Cpo=1.2,测
22、量系统策划,典型的进展,测量系统的设计开发,测量系统的制造,测量系统实施(定期校准、统计分析),测量系统设计和开发,要测量什么?特性的类型是什么?是动态还是静态?是电性能吗?有重要的零件内变差?测量过程的结果(输出)用作什么目的?生产改进、生产监控、实验室研究、过程审核、装运检查、进货检查、对doe的反馈吗?谁将使用过程?操作者、工程师、技师、检查者、审核员?要求的培训:操作者、维护人员、工程师、教室、实际应用、在职培训、学徒期间。,测量系统设计和开发,确定变差来源了吗?使用小组、头脑风暴、渊博的过程知识、因果图或矩阵建立误差模型。开发测量系统或专用的测量系统?测量系统可以是永久的和专用的,或
23、者也可以是柔性的且有可以测量不同类型零件的能力;如:仪器车量具、夹具量具、三坐标测量机等。柔性的量具会更昂贵,但长期运行可以省钱。接触或不接触:可靠性、特性类型、样件计划、成本、维护、校准、人员技能、兼容性、环境、速度、传感器类型、零件偏差和图像处理。这可以由控制计划要求和测量(在连续抽样期间全面接触量具可能有额外磨损)频次确定。全表面接触传感、传感器类型、空气反馈喷射、图像处理,CMM或光学比较仪等。,测量系统设计和开发,环境:污垢、潮湿、湿度、温度、振动、噪声、电磁干扰、周围空气移动、空气污染物等。实验室、车间、办公室等?以微米水平计算的紧密公差使环境成为关键的问题。同时,还有cmm、显示
24、系统及超声波等。这可能是过程内自动反馈类型测量的一个因素。切削油、切削碎片和超高温也可能成为问题。需要干净房间吗?测量和定位点:使用GD&T清楚地确定固定和夹紧点以及在零件的何处进行测量。固定方法:自由状态或夹紧的零件定位。零件方向:主要部份位置与其它部份。,测量系统设计和开发,零件准备:测量前零件应该干净、无油、温度稳定吗?传感器定位:角度方向,到最初定位器或网络的距离。相互关系问题1:在车间内或在车间之间需要加倍(或更多)的量具支持要求吗?制造的考虑、测量误差的考虑、维修的考虑。那个被认定是标准?怎样使每项有资格?相互关系问题2:方法分歧:从不同的测量系统设计但应用于可接受的实践和操作限制
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 03826MSA 测量系统研究 03826 MSA 测量 系统 研究
链接地址:https://www.31ppt.com/p-2878154.html