弹性力学平面问题的基本理论.ppt
《弹性力学平面问题的基本理论.ppt》由会员分享,可在线阅读,更多相关《弹性力学平面问题的基本理论.ppt(163页珍藏版)》请在三一办公上搜索。
1、第一节 平面应力问题和平面应变问题,第二节 平衡微分方程,第三节 平面问题中一点的应力状态,第四节 几何方程 刚体位移,第五节 物理方程,第六节 边界条件,第二章 平面问题的基本理论,第七节 圣维南原理及其应用,第八节 按位移求解平面问题,第九节 按应力求解平面问题 相容方程,第十节 常应力情况下的简化 应力函数,第二章 平面问题的基本理论,弹性力学平面问题共有应力、应变和位移8个未知函数,且均为。,2-1平面应力问题和平面应变问题,弹性力学空间问题共有应力、应变和位移15个未知函数,且均为;,平面应力,一、平面应力问题,1.形状特点:物体是很薄的等厚度板,即:z向尺寸远小于板面尺寸。,2.外
2、力特点:体力和面力均平行于xoy面作用,且沿板厚均匀分布。,注:(1)力学中的“薄”往往意味着力学量不沿厚度变化。,(2)加上外力垂直厚度方向不沿厚度变化使这种不变性更合理。,平面应力,3.应力特点(假设):,在前后自由面上,物体很薄,体力和面力均沿板厚均匀分布,(1)应力沿z轴没有变化,即:应力只是x,y的函数。,(2)只有,三个应力分量,且只是x,y的函数,所以称平面应力问题。,(2)只有,各点沿z向的位移、应变一般并不等于0。,例如:沿x或y向拉伸时,沿z向会收缩。,2.应力只是x、y的函数。,平面应力问题的两个特征:,1.只有三个平面应力:,并非作用于 xoy 面内,而是与之平行。,如
3、:弧形闸门闸墩,计算简图:,平面应力,深梁,计算简图:,F,因表面无任何面力,,平面应力,A,B,例题1:试分析AB薄层中的应力状态。,故接近平面应力问题。,故表面上,有:,在近表面很薄一层内:,二、平面应变问题,平面应变问题中物体的特点:,1.形状特点:,z 向尺寸远大于xoy面的尺寸,为等截面的长柱体(理论上无限长)。,2.外力特点:,外力均平行于xoy面,且沿z 轴无变化。,3变形特点:,如图当柱体无限长时,任意垂直于z轴的横截面都是无限长柱体和载荷的对称面,平面位移问题,位移,(3)应力,注意:一般来讲,平面应变问题(平面位移问题),2.应变只是x、y的函数。,1.只有三个平面应变:,
4、特征:,工程中的平面应变问题,隧道,挡土墙,o,y,x,y,o,x,例如:,平面应变,隧道,挡土墙,o,y,x,y,o,x,且仅为。,故只有,,本题中:,平面应变,ox,y,z,例题2:试分析薄板中的应变状态。,故为平面应变问题。,总结:,平面应力问题和平面应变问题的基本特征:,如图从平面应力(变)物体中取单元体,平面问题可取厚为1,长dx,宽dy。,物体内任一点的微分体的平衡条件,22平衡微分方程,其中:,应用的基本假定:连续性假定:应力用连续函数假定小变形假定:用变形前的尺寸代替变形后的尺寸,列出平衡条件:,合力=应力面积,体力体积;以正向物理量来表示。平面问题中可列出3个平衡条件。,平衡
5、条件,因为单元体是微小的,所以它上面所受的应力可以认为是均匀的,由单元体平衡得:,将,代入,同理可得:,再由,可得:,化简后同除于dx,dy得:,对平衡微分方程的说明:代表A中所以点的平衡条件;适用的条件:连续性、小变形;应力不能直接求出;对两类平面问题的方程相同;比较:(1)理力:考虑整体V平衡(只决定整体的运动状态)(2)材力:考虑有限体 平衡(近似)(3)弹力:考虑微分体dV的平衡(精确),理力(V),材力(),弹力(),h,V,dx,dy,dx,例:材料力学中横力弯曲时矩形横截面上的正应力公式为:,试利用平衡方程并考虑材料力学的假设导出横截面上的切应力。不计体力。,解:根据材料力学假设
6、对于梁来讲只有:且均为x,y的函数,属于平面应力问题。代入平衡微分方程得:,其中:Fs为横截面上的剪力,是x的函数。f(x)是待定的函数,由边界条件确定。,思考题,1.试检查,同一方程中的各项,其量纲 必然相同(可用来检验方程的正确性)。2.将条件,改为对某一角点的,将得出什么结果?3.微分体边上的应力若考虑为不均匀分布,将得出什么结果?,已知坐标面上应力,求斜面上的应力。,问题的提出:,23平面问题中一点的应力状态,问题,求解:取出一个三角形微分体(包含 面,面,面),边长,问题,斜面应力表示:,由平衡条件,并略去高阶分量体力项,得,(1)求(,),(a),斜面应力,其中:l=cos(n,x
7、),m=cos(n,y)。,(2)求(),将 向法向,切向投影,得,斜面应力,设某一斜面为主面,则只有由此建立方程,求出:,(3)求主应力,斜面应力,(c),将x,y放在 方向,列出任一斜面上应力公式,可以得出(设),(4)求最大,最小应力,最大,最小应力,说明:以上均应用弹力符号规定导出。,(d),几何方程表示任一点的微分线段 上形变与位移之间的关系。,24几何方程刚体位移,定义,变形前位置:变形后位置:各点的位置如图。,通过点P(x,y)作两正坐标向的微分线段,定义,应用基本假定:连续性;小变形。,当很小时,,假定,假定,由位移求形变:,PA 线应变,PA 转角,PB 线应变,PB 转角,
8、同理,,适用于区域内任何点,因为(x,y)A;,对几何方程的说明:,所以平面问题的几何方程为:,说明,适用条件:a.连续性;b.小变形。,应用小变形假定,略去了高阶小量 线性的几何方程;,几何方程是变形后物体连续性条件 的反映和必然结果。,形变和位移之间的关系:位移确定 形变完全确定:,从物理概念看,各点的位置确定,则微分线段上的形变确定。,说明,从数学推导看,位移函数确定,则其导数(形变)确定。,从物理概念看,确定,物体还可作刚体位移。,从数学推导看,确定,求位移是积分运算,出现待定函数。,形变确定,位移不完全确定:,形变与位移的关系,由,两边对y积分,,由,两边对x积分,,例:若,求位移:
9、,形变与位移的关系,代入第三式,分开变量,,因为几何方程第三式对任意的(x,y)均应满足。当x(y)变化时,式(b)的左,右均应=常数,由此解出。可得,形变与位移的关系,物理意义:,形变与位移的关系,表示物体绕原点的刚体转动。,表示x,y向的刚体平移,,结论,形变确定,则与形变有关的位移可以确定,而与形变无关的刚体位移则未定。须通过边界上的约束条件来确定。,思考题,1.试证明微分体绕z轴的平均转动分量是,2.当应变为常量时,试求出对应的位移分量。,物理方程表示(微分体上)应力和形变 之间的物理关系。,定义,即为广义胡克定律:,25物理方程,物理方程的说明:,说明,正应力只与线应变有关;切应力只
10、与切 应变有关。,是线性的代数方程;,是总结实验规律得出的;,适用条件理想弹性体;,物理方程的两种形式:应变用应力表示,用于 按应力求解;应力用应变(再用位移表示)表示,用于按位移求解。,说明,平面应力问题的物理方程:,代入,得:,在z方向,平面应力,代入 得,平面应变问题的物理方程,平面应变,在z方向,,平面应力物理方程平面应变物理方程:,变换关系:,平面应变物理方程平面应力物理方程:,思考题,1.试证:由主应力可以求出主应变,且两者方向一致。2.试证:3个主应力均为压应力,有时可以产生拉裂现象。3.试证:在自重作用下,圆环(平面应力问题)比圆筒(平面应变问题)的变形大。,位移边界条件 设在
11、 部分边界上给定位移分量 和,则有,(在 上)。(a),定义,边界条件 表示在边界上位移与约束,或应力与面力之间的关系。,位移边界条件,26边界条件,若为简单的固定边,则有,位移边界条件的说明:,(在 上)。(b),它是在边界上物体保持连续性的条 件,或位移保持连续性的条件。,它是函数方程,要求在 上每一点,位移与对应的约束位移相等。,在23 中,通过三角形微分体的平衡条件,导出坐标面应力与斜面应力的关系式,,应力边界条件设在 上给定了面力分 量,(在A中)。(c),应力边界条件,将此三角形移到边界上,并使斜面与边界面重合,则得应力边界条件:,它是边界上微分体的静力平衡条件;,说明,应力边界条
12、件的说明:,式(c)在A中每一点均成立,而 式(d)只能在边界 s上成立;,它是函数方程,要求在边界上每一点s 上均满足,这是精确的条件;,所有边界均应满足,无面力的边界(自由边)也必须满足。,式(d)中,按应力符号规定,按面力符号规定;,位移,应力边界条件均为每个边界两 个,分别表示,向的条件;,说明,若x=a为正x 面,l=1,m=0,则式(d)成为,当边界面为坐标面时,,坐标面,若x=-b为负x 面,l=-1,m=0,则式(d)成为,应力边界条件的两种表达式:,两种表达式,在同一边界面上,应力分量应等于对 应的面力分量(数值相等,方向一 致)。即在同一边界面上,应力数值应 等于面力数值(
13、给定),应力方向应同面 力方向(给定)。,在边界点取出微分体,考虑其平衡条 件,得式(d)或(e),(f);,在斜面上,在坐标面上,由于应力与面力的符号规定不同,故式(e),(f)有区别。,例如:,两种表达式,例1列出边界条件:,例2列出边界条件:,显然,边界条件要求在 上,也成抛物线分布。,部分边界上为位移边界条件,另一部分边界上为应力边界条件;,混合边界条件,混合边界条件:,同一边界上,一个为位移边界条件,另一个为应力边界条件。,例3列出 的边界条件:,思考题,M,n,1.若在斜边界面上,受有常量的法向分布 压力 作用,试列出应力边界条件,(思考题图中(a))。2.证明在无面力作用的0A边
14、上,不等 于零(思考题图中(b))。3.证明在凸角A点附近,当无面力作用 时,其应力为零(思考题图中(c))。,4.试导出在无面力作用时,AB边界上的 之间的关系。(思考题图中(d)。5.试比较平面应力问题和平面应变问题的 基本方程和边界条件的异同,并进一步 说明它们的解答的异同。,弹性力学问题是微分方程的边值问题。应力,形变,位移等未知函数必须满足A内的方程和S上的边界条件。主要的困难在于难以满足边界条件。,27圣维南原理及其应用,圣维南原理可用于简化小边界上的应力边界条件。,如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对同一点的主矩也相同),那么,近处的应
15、力分量将有显著的改变,但 远处所受的影响可以不计。,圣维南原理,圣维南原理:,圣维南原理,1.圣维南原理只能应用于一小部分边界(小边界,次要边界或局部边界);,圣维南原理的说明:,4.远处 指“近处”之外。,3.近处 指面力变换范围的一,二倍 的局部区域;,2.静力等效 指两者主矢量相同,对 同一点主矩也相同;,圣维南原理,圣维南原理表明,在小边界上进行面力的静力等效变换后,只影响近处(局部区域)的应力,对绝大部分弹性体区域的应力没有明显影响。,圣维南原理推广:如果物体一小部分边界上的面力是一个平衡力系(主矢量及主矩都等于零),那么,这个面力就只会使近处产生显著的应力,而远处的应力可以不计。,



- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 弹性 力学 平面 问题 基本理论

链接地址:https://www.31ppt.com/p-2874245.html