路基上板式无砟轨道设计及计算毕业设计.doc
《路基上板式无砟轨道设计及计算毕业设计.doc》由会员分享,可在线阅读,更多相关《路基上板式无砟轨道设计及计算毕业设计.doc(54页珍藏版)》请在三一办公上搜索。
1、摘要研究目的:轨道是直接承受列车荷载作用并引导列车运行的重要部分,因此轨道需要有足够的强度和稳定性。随着高速铁路的发展,有砟轨道因自身的缺点而无法适应,因此需要设计合理的无砟轨道结构来满足高速铁路对于高速度的要求。研究方法:采用有限元理论,建立板式无砟轨道的梁板板模型,应用大型有限元分析软件MIDAS对模型进行求解,并对轨道板和底座进行配筋设计和校核。研究结果:总结了荷载作用位置、扣件刚度、轨道板宽度、CA砂浆弹性模量、地基弹性系数等主要参数对轨道板、CA砂浆和底座的受力影响规律,求得列车竖向荷载作用下轨道板和底座的最不利弯矩。研究结论:轨下垫层刚度在5080kN/mm范围内为宜,CA砂浆弹性
2、模量对钢轨与轨道板及底座板的位移影响不是很明显,地基弹性系数宜采用190MPa/m,通过建立路基上板式无柞轨道梁一板有限元模型计算得到的弯矩值,根据容许应力法并结合上述弯矩值对无柞轨道混凝土底座进行配筋计算。计算结果表明,路基上板式无砟轨道混凝土底座的配筋主要由最小裂缝宽度决定。关键词:板式无砟轨道;有限元;梁板模型;配筋AbstractThe track is the important part which bears load directly and guide the train running, so the track should have enough strength an
3、d stability. Whit he development of high-speed railway, ballasted track cannot adapt to the development because of its own disadvantages. It is necessary to design reasonable ballast-less track structure to meet the high speed requirement of high-speed railway.Research method: Use the Finite Element
4、 Analysis to establish beam-slab-slab model of slab ballastless track ,and solve the model with the help of large scale application software-MIDAS, do the work of track slab and base reinforcement design and verification.Research method: Use the Finite Element Analysis to establish beam-slab-slab mo
5、del of slab ballastless track ,and solve the model with the help of large scale application software-MIDAS, do the work of track slab and base reinforcement design and verification.Research results: Sum up the force influence of the loading position, fastener stiffness, the width of track slab, CA m
6、ortar elastic modulus, foundation elastic coefficient and other major parameters,and seek the most unfavorable moment of track plate and base plate under vertical loads.Keywords:Slab ballastless track, Finite element, Beam-slab model, Reinforcement目录1 绪论11.1 无砟轨道概述11.2 无砟轨道主要技术特点11.3 世界各国无砟轨道发展情况41.
7、4 国内无砟轨道结构研究与工程实践51.5 板式无砟轨道的结构与类型72 我国的板式无砟轨道152.1 我国客运专线主要无砟轨道结构型式介绍152.1.1 CRTS型板式无砟轨道152.1.2 CRTS型板式无砟轨道172.1.3 CRTS型板式无砟轨道192.1.4 CRTS型双块式无砟轨道192.1.5 CRTS型双块式无砟轨道212.1.6 岔区轨枕埋入式无砟轨道与岔区板式无砟轨道212.2 板式轨道的技术要求222.3 板式无砟轨道设计242.4 板式无砟轨道结构设计原理252.4.1 弹性地基梁理论263.3.2 弹性地基叠合梁理论263.3.3梁板板弹性支承弯曲理论283.3.4
8、梁板体弹性支承弯曲理论283 板式无砟轨道的设计和计算293.1 MIDAS介绍293.2 模型的选择293.3 模型的建立303.4 计算参数303.5 无砟轨道梁板模型的荷载工况313.6 MIDAS运行结果及分析314 板式无砟轨道的底座和轨道板的配筋384.1 设计原则及规范384.1.1计算原则384.1.2设计规范384.1.3计算方法404.2 轨道板的配筋及验算414.2.1轨道板纵向配筋414.2.2轨道板横向配筋434.3 混凝土底板配筋及验算444.3.1混凝土底座纵向配筋444.3.2混凝土底座横向配筋46结论49致谢50参考文献51 1 绪论1.1 无砟轨道概述轨道是
9、铁路线路设备的基础和重要组成部分,它直接承受着列车荷载的作用并引导列车的运行。列车作用于轨道上的力有垂直压力、横向水平力、纵向水平力,以及因温度变化所产生的温度附加力等。因此,要求轨道结构有足够的强度和稳定性,各组成部分的结构要合理,尺寸及材质要相互配合、等强配套、弹性连续,以保证列车按规定的速度,安全、平稳和不间断地运行。随着列车速度的提高,对轨道结构的技术要求越来越高。1964年建成通车的日本东海道新干线,开创了铁路高速行车的实用化历史。此后,高速铁路技术不断发展和创新。目前,日本、法国、德国等发达国家的高速列车最高时速已达300公里/小时以上。要确保列车在高速行车条件下,安全、平稳地不间
10、断运行,发展新型轨道建筑和维修技术,已成为高速铁路技术研究的重点之一。传统有砟轨道结构自诞生之日起,就显现出稳定性差的缺点,其原因在于碎石道床在列车荷载长期作用下,产生变形及道砟的磨损和粉化。由于钢轨支承点的非连续,道床变形沿线路纵向呈现非均匀性特点,对保持良好的轨道几何状态和均衡质量十分不利。一般情况下,道床维修工作量占线路维修工作量的70%以上,而高速铁路相对于普通既有线路,维修费用要增加2倍,道砟使用周期减少一半。目前,高速铁路的发展趋势是运营速度300km/h,其对轨道结构的平顺性和稳定性要求更高。日本于20世纪70年代率先开发和使用板式无砟轨道技术,至今,铺设的板式轨道已占日本先干线
11、的60%以上。与有砟轨道相比,板式轨道具有更好的整体性、稳定性和耐久性,虽然技术较复杂,一次性投资大于有砟轨道,但其使用寿命周期长,通常使用周期为30年,轨道板在使用周期内基本上免维修,运营过程中维修的工作量可坚守70%以上,能够有效缓解高速铁路运营与维修的矛盾,总的成本并不比有砟轨道高,为高速度、高密度的铁路运输提供了有利条件。1.2 无砟轨道主要技术特点无砟轨道是一种少维护的轨道结构,它利用成型的组合材料代替道砟,将轮轨力分布并传递到路基基础上。无砟轨道的优点:良好的结构连续性和平顺性有砟轨道采用均一性比较差的天然道砟材料,在列车荷载作用下其道床肩宽、砟肩堆高、道床边坡、轨枕间距及轨枕在道
12、床中的支承状态相对易于变化,并导致轨道几何变形。 无砟轨道的下部基础、底座、道床板均为现场工业化浇注,双块式轨枕、轨道板、微孔橡胶垫层、轨下胶垫、扣件、钢轨等均为工厂预制件或标准产品,可以保证其性能有较好的均一性。由此组成的轨道整体结构与有砟轨道相比具有更好的结构连续性和弹性均匀性,为提高轨道的平顺性,改善乘车质量提供了有利条件。良好的结构恒定性和稳定性 无砟轨道结构中,作为无缝线路稳定性计算参数的轨道横向阻力、轨道纵向阻力不再依赖于材质和状态多变的有砟道床,其整体式轨下基础可为无缝线路提供更高和更恒定的轨道纵、横向阻力,具有更好的耐久性和更长的使用寿命。良好的结构耐久性和少维修性能无砟轨道维
13、修工作量大大减少,被称为“省维修”轨道,为延长线路的维修周期以及客运专线列车的高密度、准点正常运行提供重要保证。客运专线的行车速度高、密度大,所有线路地面检查、维修作业都必须在“天窗”时间内进行。我国客运专线由于跨线列车多,自身的行车密度又大,不可能完全像国外高速铁路那样白天行车、夜间轨道维修作业。要在白天、夜间均行车的条件下,安排“天窗”作业就更加困难。减少线路维修工作量是保证客运专线列车准点正常运行的前提条件。无砟轨道采用整体式轨下基础。与采用散粒体结构的有砟道床基础相比,在列车荷载作用下不会产生道砟颗粒磨耗、粉化、相对错位所引起的道床结构变形;在列车荷载反复作用下不会产生变形积累,使轨道
14、几何尺寸的变化基本控制在轨下胶垫、扣件及钢轨的松动和磨损等因素之内,从而大大降低轨道几何状态变化的速率,较少养护维修工作量,延长维修周期和轨道使用寿命。工务养护、维修设施减少 由于维修工作量减少,可以延长每个综合维修中心和维修工区的管辖范围,从而减少上述维修部门的数量。同时也可相应减少每个部门配置的维修机械、停车股道数量和房屋等设施。免除高速条件下有砟轨道的道砟飞溅 我国秦沈客运专线在线路开通之前进行的行车试验表明:行车速度达到250kmh-1时,道心道砟出现飞砟现象,造成车辆转向架部分的车轴、制动缸等被道砟打击的现象。根据法国TGV铁路运营经验,有砟轨道在列车速度达到350kmh-1时,出现
15、较严重的道砟飞溅现象。后将速度降到320 kmh-1时,飞砟现象才有所改善。此外,在严寒冬季,冻结在车体下部的冰块融化后,冰块打在道砟上,溅起的道砟会打坏钢轨踏面。另外,在进行道床维修施工作业后,由于表层道砟松散,粉粒较多,也会产生飞砟,此时要求限速170 kmh-1行车。 采用无砟轨道之后,就可以完全免除道砟飞溅的顾虑。有利于适应地形选线,减少线路的工程投资无砟轨道的纵、横向稳定性较之有砟轨道大大增加。在选线困难的地段可以利用无砟轨道能承受较大轮轨横向力的有利条件,在保证舒适度的前提条件下,适当放宽曲线允许超高、欠超高的限制,减小最小曲线半径,从而有利于选线,减少工程量。减少客运专线特级道砟
16、的需求为了延缓客运专线有砟轨道上道砟的磨耗和粉化,道砟材料要求采用为客运专线专门制定的特级道砟标准。我国特级道砟标准与国外高速铁路道砟标准相比,尽管在性能指标上仍有一定的差距,但符合这种性能要求的岩藏资源在我国,特别是中南和西南地区仍相当稀少,可能难以满足我国新建客运专线的需求。发展无砟轨道可以减少客运专线建设对特级道砟的需求量。无砟轨道的缺点:无砟轨道弹性差 日本、德国开发无砟轨道的初衷是力求无砟轨道的轨道弹性等于或接近于有砟轨道的轨道弹性,但实际开发的结果却是无砟轨道的弹性仍低于有砟轨道。轨道弹性的降低会增加轴重对轨道破坏、失效和轨道状态恶化的影响,也会随着轴重的增加加剧环境振动和噪声。因
17、此,在轴重较大的客货共线铁路以及轴重更大的重载铁路,国内外规模铺设无砟轨道的范例尚属罕见。 进一步改善无砟轨道弹性和降低列车轴重是今后客运专线上发展无砟轨道的努力方向。建设期工程总投资大于有砟轨道 与有砟轨道相比,尽管无砟轨道的结构高度低、自重轻、无砟轨道在隧道中铺设时,轨顶面一下的隧道开挖面积可适当减小;在桥上铺设时,由于其二期恒载相应减轻,从而降低桥、隧工程费用。但无砟轨道结构本身的工程费用高于有砟轨道,特别是在对振动和噪声等环境要求较高的地段,用于减振降噪措施的费用比有砟轨道要高。总体来说,无砟轨道建设期投资大于有砟轨道。 对地震和环保的适应性根据日本的经验,无砟轨道在低等级地震条件下,
18、比有砟轨道具有更好的稳定性,从而提高行车的安全性,但在大地震情况下,有砟、无砟轨道都会遭到破坏,而无砟轨道的修复更为困难。和有砟轨道相比,无砟轨道的弹性较差、环境振动和噪声的量级较高。在靠近人口居住区及诸如学校、医院、办公区、度假区等环保要求较高的地段,其减振降噪措施及相应的工程费用也会增加。1.3 世界各国无砟轨道发展情况德国是世界上研究开发无砟轨道较早的国家。到2003,德国铁路无砟轨道纵铺设长度600多延长公里。其主要结构型式有雷达、雷达2000、旭普林、Berlin、ATD、Getrac和博格型。先期在雷达车站土质路基上铺设的无砟轨道运营已超过30年,通过总重达4000亿吨,运营速度达
19、230kmh-1,除了在运营初期出现过46mm的均匀沉降和在轨枕周边与素混凝土之间出现过某些无害裂纹外,轨道结构完好。运营中仅少数扣件需要调整,维修工作量很少。日本新干线的无砟轨道结构型式相对单一。从20世纪60年代中期开始就针对板式无砟轨道结构开展了系统的理论研究与试验。日本板式轨道的营运是从桥梁和隧道开始的,在既有线和先干线上先后共铺设了20多处近30km的试验段。日本板式轨道在土质路基上的应用同样经历了30多年的发展历程,开展了大量室内外试验研究工作。20世纪90年代初,为了改善RA型板式轨道所用沥青材料的温度敏感性和耐久性,提出用混凝土道床代替沥青混凝土道床的结构方案,并用普通A型轨道
20、板取代RA型轨道板,实现板式轨道结构型式的统一。正式在土质路基上铺设普通A型板式轨道前,1991年在北陆新干线路堤上铺设了60m的试验段,进行静、动载试验。试验中确定路基的最大下沉量限值为30mm。经模拟通过总重4500万吨t的重复加载试验后,最终下沉量为6.2mm,达到了试验的预期目标。1993年板式轨道在北陆新干线土质路基上铺设了10.8km,占全线长的4%,占土质路基的25%。至今,板式轨道在日本既有线和新干线累计铺设长度达2700延长公里。英国铁路从1960年开始研究无砟轨道,1966年起开始试铺各种型式的板式轨道。PACT(Paved Concrete Track)轨道为英国1969
21、年研制、试铺,1973年正式使用的高速、重载少维修无砟轨道,简称PACT轨道。这种轨道已被英国、西班牙、南非、加拿大和荷兰等国广泛用于大轴重高速客运专线的隧道内和桥梁结构上,铺设总延长约为80km。英国铁路的无砟轨道与日本新干线和德国铁路干线所铺设的板式轨道均不相同,它是用钢筋混凝土灌注成的无接缝连续的刚性道床板直接支承钢轨,在轨底与混凝土道床之间放置一条带状的连续橡胶垫层,以给轨道提供必要的弹性,采用潘德罗尔弹条扣件联结。这种轨道也称为PACT型无砟轨道。英国铁路试铺的PACT型无砟轨道,具有投资较低、维修费用少、噪音小、稳定性强等特点,适宜在隧道内和高架桥上使用。但由于轨道板与其基础是刚性
22、联结,故要求基础必须坚实、不变形,一旦混凝土道床损坏,修复是很困难的。韩国首尔至釜山的高速铁路全长412km,分2期工程建设,一期工程由首尔至大邱,全长289.3km,二期工程由大邱至釜山南段,全长122.7km。一期工程在光明车站和章上、花信、黄鹤3个隧道铺设了53.841km无砟轨道,主要采用德国普通雷达型无砟轨道。1.4 国内无砟轨道结构研究与工程实践国内对无砟轨道的研究始于20世纪60年代,与国外的研究几乎同时起步。初期曾试铺过支承块式、短枕式、整体灌注式等整体道床以及沥青道床等几种形式,但正式推广应用的仅有轨枕嵌入式(支承块式)整体道床。先后在成昆线、京原线、京通线、南疆线等长度超过
23、1km的隧道内铺设,总铺设长度约300km。80年代曾试铺过沥青整体道床、由沥青混凝土铺装层与宽枕组成的整体道床以及由沥青关注的固化道床等,在大型客站和隧道内试铺,总长约10km,但并为正式推广。另外,在京九线长江大桥引桥上铺设了无砟无枕结构,长度约7km。 在此20多年期间,我国无砟轨道的结构设计、施工方法、轨道基础的技术要求以及出现基础沉降病害时的政治等方面积累了宝贵的经验,为发展无砟轨道新技术打下了基础。 1995年开始对弹性支承块式无砟轨道的研究,1996年、1997年先后在陇海线白青隧道和安康线大瓢沟隧道铺设试验段。在秦岭隧道一线、秦岭隧道二线正式推广使用,一、二线合计无砟轨道长度3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 路基 板式 轨道 设计 计算 毕业设计
链接地址:https://www.31ppt.com/p-2854629.html