第3章+炼油设备的腐蚀与防护.ppt
《第3章+炼油设备的腐蚀与防护.ppt》由会员分享,可在线阅读,更多相关《第3章+炼油设备的腐蚀与防护.ppt(64页珍藏版)》请在三一办公上搜索。
1、第3章 炼油设备的腐蚀与防护第3-1节 炼油系统中的腐蚀介质第3-2节 炼油设备的腐蚀及防护对策第3-3节 炼油设备腐蚀案例,第3-1节 炼油系统中的腐蚀介质,一、原油中的腐蚀介质二、炼油厂的腐蚀环境,一、原油中的腐蚀介质1.硫化物原油中的硫化物主要包括:硫化氢,硫和硫醇;硫醚,多硫醚,噻吩,二硫化物等。含硫量在0.1%0.5%的原油叫做低硫原油;含硫量大于0.5%者为高硫原油;硫化物含量越高对设备腐蚀就越强。硫化物对设备的腐蚀与温度t有关:(1)t120硫化物未分解,在无水情况下,对设备无腐蚀;但当含水时,则形成炼厂各装置中轻油部位的各种H2SH20型腐蚀。(2)120480,硫化物近于完全
2、分解,腐蚀率下降;(7)t500,不是硫化物腐蚀范围,为高温氧化腐蚀。,2.无机盐 原油中的无机盐类主要有NaCl、MgCl2、CaCl2等,盐类的含量一般为(5130)10-6,其中NaCl约占75%、MgCl2约占15%、CaCl2约占10%左右。3.环烷酸 环烷酸(RCOOH,R为环烷基)是石油中一些有机酸的总称。主要是指饱和环状结构的酸及其同系物。此外还包括一些芳香族酸和脂肪酸。其分子量在很大范围内变化(180350)。环烷酸在常温下对金属没有腐蚀性。但在高温下能与铁等生成环烷酸盐,引起剧烈的腐蚀。4.氮化物 石油中所含氮化合物主要为吡啶,吡咯及其衍生物。在高温及催化剂作用下可分解成可
3、挥发的氨和氰化物(HCN)。分解生成的氨将在焦化及加氢等装置形成NH4C1,造成塔盘垢下腐蚀或冷换设备管束的堵塞。但焦化塔顶的碱性含氨、含酚水可作为常减压装置防腐蚀措施“注水”的水,以控制常压塔顶冷凝系统的HCl-H2S-H20的腐蚀。催化分馏塔顶的含氨冷凝水也可代替氨液注入减压塔顶冷凝冷却系统,以控制其腐蚀。HCN的存在对催化装置低温H2S-H20部位的腐蚀起到促进作用,造成设备的氢鼓泡、氢脆和硫化物应力开裂。,5.国内外原油所含腐蚀介质表3-1国内原油腐蚀介质含量,5.国内外原油所含腐蚀介质表3-2进口原油腐蚀介质含量,6.我国原油分类根据原油中含硫及酸值的高低,可将我国原油分为:(1)低
4、硫低酸值原油 原油含硫0.1%0.5%,酸值0.5mgKOH/g,如大庆原油。(2)低硫高酸值原油 原油含硫0.1%0.5%,酸值0.5mgKOH/g,如辽河原油,新疆原油。(3)高硫低酸值原油 原油含硫0.5%,酸值0.5mgKOH/g,如胜利原油。(4)高硫高酸值原油 原油含硫0.5%,酸值0.5mgKOH/g,如孤岛原油和“管输原油”。,二、炼油厂的腐蚀环境1.含硫、高酸值腐蚀环境(1)低温(t120)轻油H2S-H20型腐蚀环境:HCl-H2S-H20型HCN-H2S-H20型C02-H2S-H20型RNH2(乙醇胺)-C02-H2S-H20型H2S-H20型。(2)高温(240500
5、)重油H2S型腐蚀环境S-H2S-RSH(硫醇)型S-H2S-RSH-RCOOH(环烷酸)型H2+H2S型。(3)高温硫化在硫磺回收装置中,燃烧后的高温含硫过程气中,气流组成为H2S、S02,硫蒸气、CS2、COS、C02、H20及氮气等。,2.其他腐蚀环境2.1水分2.2氢氢向钢材渗透,导致钢材的脆化,主要形式如下。氢脆。表面脱碳。内部脱碳(氢腐蚀)。2.3有机溶剂气体脱硫、润滑油精制均要使用有机溶剂,如乙醇胺、糠醛、二乙二醇醚、酚等。生产过程中会发生降解、聚合、氧化等作用而生成某些腐蚀设备的物质。2.4氨2.5烧碱(NaOH)在炼油厂中,各种钢及不锈钢由烧碱(NaOH)造成的应力腐蚀开裂也
6、是常见的。通常此种开裂称为“碱脆”。2.6硫酸炼油厂中硫酸主要用于烷基化,电精制等装置。炼油厂所用大多为98%硫酸,使用碳钢设备即可。2.7氢氟酸烷基化装置使用氢氟酸代替硫酸作为催化剂。氢氟酸与钢反应可形成氟化物保护膜而钝化金属。若这些保护膜被稀酸破坏,将产生严重腐蚀。,一、HCl-H2S-H2O的腐蚀与防护二、H2S-H2O的腐蚀与防护三、HCN-H2S-H2O的腐蚀与防护四、CO2-H2S-H20的腐蚀与防护五、RNH2(乙醇胺)-CO2-H2S-H2O的腐蚀与防护六、S-H2S-RSH的腐蚀与防护七、S-H2S-RCOOH的腐蚀与防护八、高温H2的腐蚀与防护九、高温H2-H2S的腐蚀与防
7、护十、连多硫酸的腐蚀与防护十一、氢氟酸的腐蚀与防护十二、氢氧化钠的腐蚀与防护十三、液氨的腐蚀与防护十四、硫酸露点腐蚀与防护,第3-2节 炼油设备的腐蚀及防护对策,一、HCl-H2S-H2O的腐蚀与防护 1.HCl-H2S-H20的腐蚀部位及形态。腐蚀部位:常压塔顶部五层塔盘,塔体,部分挥发线及常压塔顶冷凝冷却系统(此部位腐蚀最严重);减压塔部分挥发线和冷凝冷却系统。一般气相部位腐蚀较轻微,液相部位腐蚀严重。尤以气液两相转变部位即“露点”部位最为严重。由于影响此部位的主要因素是原油中的盐水解后生成HCl而引起的。因此不论原油含硫及酸值的高低,只要含盐就会引起此部位的腐蚀。腐蚀形态:碳钢部件的全面
8、腐蚀、均匀减薄;Cr13钢的点蚀;以及1Cr18Ni9Ti不锈钢为氯化物应力腐蚀开裂。,一、HCl-H2S-H2O的腐蚀与防护 2.腐蚀反应 在原油加工时,当加热到120以上时,MgCl2和CaCl2即开始水解生成HCl。MgCl2+2H20 Mg(OH)2+2HClCaCl2+2H20 Ca(OH)2+2HClNaCl+H20 NaOH+HCl HCl、H2S处于干态时,对金属无腐蚀。当含水时在塔顶冷凝冷却系统冷凝结露出现水滴,HCl即溶于水中成盐酸。此时由于初凝区水量极少,盐酸浓度可达l%2%,成为一个腐蚀性十分强烈的“稀盐酸腐蚀环境”。若有H2S存在,可对该部位的腐蚀加速。HCl和H2S
9、相互促进构成循环腐蚀,反应如下:Fe+2HCl FeCl2+H2FeCl2+H2S FeS+HClFe+H2S FeS+H2FeS+HCl FeCl2+H2S,一、HCl-H2S-H2O的腐蚀与防护3.腐蚀影响因素(1)C1-浓度:此部位HCl-H2S-H20腐蚀介质中,HCl的腐蚀是主要的。其关键因素为C1-含量,HCl含量低腐蚀轻微,HCl含量高则腐蚀加重。HCl来源于原油中的氯盐的水解。(2)H2S浓度:H2S浓度对常压塔顶设备腐蚀的影响不甚显著。如胜利炼油厂炼制孤岛原油时,此常减压塔顶冷凝水含硫化氢1070mg/L,与一般情况(含硫化氢3040mg/L)相比,设备腐蚀程度并无明显加剧。
10、(3)pH值:原油脱盐后,常压塔顶部位的pH值为23(酸性)。但经注氨后可使溶液呈碱性。此时pH值可大于7。国内炼油厂在经一脱四注后,控制pH值为7.58.5,这样可控制氢去极化作用,以减少设备的腐蚀。(4)原油酸值:不同原油,其酸值是不同的。为探索石油酸含量对氯化物的影响,经300条件下进行试验得出结果是随着石油酸加入量的增大,原油中氯化物的水解率也增大。说明石油酸可促进无机氯化物水解。因此,凡酸值高的原油就更容易发生氯化物水解反应。,一、HCl-H2S-H2O的腐蚀与防护4.防护措施及材料选用4.1防护措施 低温HCl-H2S-H20环境防腐应以工艺防腐为主,材料防腐为辅。工艺防护即“一脱
11、四注”。“一脱四注”系指原油深度脱盐,脱盐后原油注碱、塔顶馏出线注氨(或注胺)、注缓蚀剂(也有在顶回线也注缓蚀剂的)、注水。该项防腐蚀措施的原理是除去原油中的杂质,中和已生成的酸性腐蚀介质,改变腐蚀环境和在设备表面形成防护屏障。4.2材料选用 在完善工艺防腐(即一脱四注)情况下,一般可采用碳钢设备,当炼制高硫原油时可用20R+0Crl3复合板制造常压塔顶HCl-H2S-H20部位的壳体(顶部五层塔盘部位)。某些炼油厂在常压塔塔顶衬里及冷凝冷却器某处试用00Crl8Ni5Mo3Si2双相不锈钢。,二、H2S-H2O的腐蚀与防护1.腐蚀部位及形态炼油厂所产液化石油气,根据原油不同液化石油气中含硫量
12、可到0.118%2.5%,若脱硫不好,则在液化石油气的碳钢球形储罐及相应的容器中产生低温H2S-H20的腐蚀。其腐蚀形态为均匀腐蚀,内壁氢鼓泡及焊缝处的硫化物应力开裂。此项腐蚀事故在国内外报道中屡见不鲜。,二、H2S-H2O的腐蚀与防护2.腐蚀反应在H2S+H20腐蚀环境中,硫化氢在水中发生离解H2S H+HS-2H+S2-钢在硫化氢的水溶液中发生电化学反应:阳极反应 Fe Fe2+2e二次过程 Fe2+S2-FeS或 Fe2+HS-FeS+H+阴极过程 2H+2e 2H(部分渗透)H2,二、H2S-H2O的腐蚀与防护2.腐蚀反应(1)一般腐蚀。硫化氢对钢的腐蚀,一般说来,温度增高则腐蚀增加。
13、在80时腐蚀率最高。在110120时腐蚀率最低。(2)氢鼓泡(HB)。(3)氢诱发裂纹(HIC)。如果钢材缺陷位于钢材内部很深处,当钢材内部发生氢聚集区域,氢压力提高后,会引起金属内部分层或裂纹。(4)应力导向氢诱发裂纹(SOHIC)。应力导向氢诱发裂纹是在应力引导下,使在夹杂物与缺陷处因氢聚集而形成的成排的小裂纹沿着垂直于应力的方向发展。(5)硫化物应力开裂(SSC)。硫化氢产生的氢原子渗透到钢的内部,溶解于晶格中导致脆性。在外加拉应力或残余应力作用下形成开裂。,二、H2S-H2O的腐蚀与防护3.腐蚀影响因素3.1材料因素 Mn非金属夹杂物。钢中MnS夹杂物是引起H2S-H20腐蚀的主要因素
14、。由于MnS为粘性的化合物,在钢材压延过程中呈条状夹杂。条状MnS的尖端即为渗入钢中的氢所聚集之处,而成为鼓泡、裂纹及开裂的起点,条状MnS夹杂多,产生应力开裂的机会就多。钢的化学成分。a.有益元素。Cr、Mo、V、Ti、Al、B。b.有害元素。Ni、Mn、P、S。金相组织。金相组织比化学成分对抗硫化物应力开裂的影响更大。在低温转变时所生的网状未回火马氏体及贝茵体等组织容易引起氢诱发裂纹。其裂纹敏感性大。细的珠光体,均匀索氏体组织有良好的抗硫化物应力开裂的性能。强度和硬度。钢材的抗拉强度和屈服极限越高(延伸率和收缩率越低),则产生硫化物应力开裂的可能性越大。硬度是导致硫化物应力开裂的重要因素。
15、为防止碳钢炼油设备焊缝产生裂纹,其硬度应控制在布氏硬度HB200,含有 CN-时最好HB185。,二、H2S-H2O的腐蚀与防护3.腐蚀影响因素3.2环境因素硫化氢浓度。对于同一硬度的钢材,硫化氢浓度越高,则越容易产生硫化物应力开裂。pH值。在H2S-H20环境中碳钢和低合钢随着溶液中pH值的增加,则出现硫化物应力开裂的时间增加。水分。H2S和钢反应产生硫化物应力开裂,必须要有水分存在。完全干燥的H2S不会使钢产生裂纹的。温度。硫化物应力开裂通常于室温下发生的几率最多,温度大于65产生破裂的事例极少,这是与H2S在水中溶解度有关。温度升高,降低了H2S的溶解度,所以不易发生开裂。提高温度对碳钢
16、和低合金钢的抗硫化物应力开裂性能会产生有益影响。溶液中化学元素。液化石油气加工过程中所携带的Cl、CO32-、CN-离子对硫化物应力开裂起到促进的有害作用。Cl、CO32-使水溶液的pH值下降,促进破裂。CN-则破坏硫化铁保护膜、产生有利于氢渗透的表面,使腐蚀加剧。,二、H2S-H2O的腐蚀与防护3.腐蚀影响因素3.3应力因素冷加工。冷加工使钢材硬度增加,残余应力变大。同时冷加工还能增加氢在钢中的溶解度和渗透能力,使氢的吸收量增加。因此冷加工往往降低了材料的抗硫化氢应力开裂的能力。焊接。低碳钢、低合金钢制炼油设备发生硫化物应力开裂大多与焊接有关,这是由于焊接(包括打弧,飞溅)造成了接近材料屈服
17、极限的残余应力,焊缝区域在熔融冷却及焊接热循环作用下的组织变化及偏析。因为焊接接头对开裂敏感性远远大于母材。硫化物应力开裂往往发生在焊接热影响区特别是熔合线。应力水平。硫化物应力开裂发生于拉应力和腐蚀介质共同作用的部位。当应力高于某一临界值时,即产生应力腐蚀开裂。,二、H2S-H2O的腐蚀与防护4.防护措施及材料选用4.1改进材料性能降低钢材的含硫量。当钢材的硫含量为0.005%0.006%,可耐硫化物应力开裂。钢中增加Ca,Ce(铈)元素,使钢中MnS夹杂物由条状变为球状,以防止裂纹产生。因Mn的Ca、Ce化合物(MnCa)S及(MnCe)S是脆性的,在轧钢过程中被破碎而呈球状。增加0.2%
18、0.3%铜,可以减少氢向钢中的扩散量。钢中增加氮,可细化非金属夹杂物,以减少产生氢诱发裂纹的长度。4.2焊后热处理,并控制焊缝硬度在湿硫化氢环境中使用的碳钢焊缝硬度不大于HB200。发现超过HB200的焊缝应采取如下措施。a.切除并重新焊接。b.在最低温度620%下,进行焊后热处理到硬度不超过HB200。,二、H2S-H2O的腐蚀与防护4.防护措施及材料选用4.3材料选用及制造要求当容器承装的介质含有H2S且符合下列条件时,则为湿H2S应力腐蚀环境。a.H2S分压300Pa。b.介质中含有液相水或操作温度处于露点之下。c.介质pH6,但当介质中含有氰化物时pH可大于7。在湿H2S应力腐蚀环境压
19、力容器用钢板应满足下列要求a.选用镇静钢,可用钢材为Q235-A,Q235-B,Q235-C,20R,20g,16MnR等。b.钢材的含镍量不大于l%。c.厚度大于20mm的钢板应l00%进行超声波探伤检查,钢板的超声波探伤检查方法按JB 4730压力容器无损检测对钢板超声检测的规定,碳钢板质量等级应符合级要求,低合金钢板质量等级符合III级要求。d.设备的焊缝应选用等强度焊接材料,即母材和焊缝强度相等。e.压力容器需经焊后热处理,热处理后焊缝(含热影响区)的硬度不大于200HB。,三、HCN-H2S-H2O的腐蚀与防护1.HCN-H2S-H20的腐蚀与形态催化原料油中硫化物在加热和催化裂解中
20、分解产生硫化氢。且在裂解温度下,元素硫也能与烃反应生成硫化氢,因此催化的富气中的硫化氢浓度很高,同时原料油中的氮化物也裂解,其中约有10%l5%转化成氨,有1%2%转化成氰化氢,在有水存在的吸收解吸系统构成了HCN-H2S-H20的腐蚀环境。当催化原料中氮含量大于0.1%会引起严重腐蚀。CN-大于50010-6会促进腐蚀加剧,小于20010-6时,促进腐蚀不明显。此部位HCN-H2S-H20的腐蚀是在CN-促进下、在碱性溶液中H2S-H20 的腐蚀,其腐蚀部位及形态如下。(1)一般腐蚀,存在于解吸塔顶部及底部,稳定塔顶部及中部等部位。腐蚀呈均匀点蚀和坑蚀直至穿孔、腐蚀率为0.11mm/a。(2
21、)氢鼓泡或鼓泡开裂,存在于解吸塔顶部、解吸塔后冷器壳体、凝缩油沉降罐等部位。一般鼓泡直径为5120mm,已开裂裂缝宽2.5mm。(3)硫化物应力开裂,存在于解吸塔顶铬钼钢母材的奥氏体不锈钢焊缝及其热影响区,故在此腐蚀环境下,不能用奥氏体不锈钢焊接铬钼钢。,三、HCN-H2S-H2O的腐蚀与防护2.腐蚀反应2.1一般腐蚀H2S和钢生成的FeS,在pH值大于6时,钢表面的FeS有较好保护性能、腐蚀率也有所下降。但当CN-存在时,能溶解FeS保护膜,产生络合离子Fe(CN)64-加速腐蚀的进行。FeS+6CN-Fe(CN)64-+S2-2Fe+Fe(CN)64-Fe2Fe(CN)6 6Fe2Fe(C
22、N)6+6H20+302 2Fe4Fe(CN)63+4Fe(OH)32.2氢渗透H2S-H20反应生成的氢原子向钢中的渗透,造成氢鼓泡或鼓泡开裂。当pH7.5且有CN-存在时,随着CN-浓度的增加,氢渗透率迅速上升,主要原因是氰化物在碱性溶液中有如下作用。氰化物溶解保护膜,产生有利于氢渗透的表面。阻碍了原子氢结合为分子氢的过程,促进了氢渗透。氰化物能清除掉溶液中的缓蚀剂(多硫化物)。所以氰化物对设备腐蚀起促进作用。2.3硫化物应力开裂。无氰化物存在时,当pH7时不易产生硫化物应力开裂,但在有CN-存在时,可在高pH值上产生硫化物应力开裂。,三、HCN-H2S-H2O的腐蚀与防护3.腐蚀影响因素
23、3.1原料油性质:原料油含硫大于0.5%、含氮大于l%、CN-大于20010-6,会引起较为严重的腐蚀。3.2温度:氢鼓泡和鼓泡开裂的敏感温度为l055。3.3游离氰化物:在pH大于7.5时,氢鼓泡和鼓泡开裂随溶液中游离CN-浓度增加而增加。4.防护措施及材料选用可采用水洗方法,将氰化物脱除,但用此法必然引起排水受到氰化物的污染,我国氰化物排水允许浓度为0.510-6。因而增加污水处理难度。资料介绍也可注入多硫化物有机缓蚀剂,将氰化物消除。材料选用方面可采用铬钼钢(12Cr2AlMo)满足此部位要求,或采用20R+0Cr13复合板。但在HCN-H2S-H2O部位需选用奥氏体不锈钢焊条焊接碳钢或
24、铬钼钢,则焊缝区极易产生硫化物应力腐蚀开裂。,四、CO2-H2S-H20的腐蚀与防护1.腐蚀部位及形态腐蚀部位发生在脱硫装置再生塔的冷凝冷却系统(管线、冷凝冷却器及回流罐)的酸性气部位。塔顶酸性气的组成为H2S(50%60%)、CO2(40%30%)及水分,温度40,压力约0.2MPa。此部位主要腐蚀影响因素是H2S-H20,某些炼油厂,由于原料气中带有HCN,而在此部位形成HCN-CO2-H2S-H2O的腐蚀介质,由于HCN的存在,加速了H2S-H2O的均匀腐蚀及硫化应力开裂。腐蚀形态,对碳钢为氢鼓泡及硫化物应力开裂,对Cr5Mo,1Crl3及低合金钢使用奥氏体焊条则为焊缝处的硫化物的应力开
25、裂。胜利炼油厂、南京炼油厂再生塔顶冷凝冷却器在运行一段时间后均出现碳钢壳呈环向、纵向焊缝硫化物应力开裂、氢鼓泡等问题,同时在焊缝裂纹处,漏出普鲁士蓝色物质(亚铁氰化铁)。2.腐蚀反应及防护此部位主要为H2S-H2O等的腐蚀,其腐蚀及反应及防护措施如前。但为防止冷凝冷却器的浮头螺栓硫化物应力开裂,可控制螺栓应力不超过屈服限的75%。且螺栓硬度低于布氏硬度HB235。,五、RNH2(乙醇胺)-CO2-H2S-H2O的腐蚀与防护1.腐蚀部位及形态腐蚀部位发生在脱硫装置于气脱硫或液化石油气脱硫的再生塔底部,再生塔底重沸器及富液(吸收了CO2-H2S的乙醇胺溶液)管线系统。温度90120,压力约0.2M
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 炼油 设备 腐蚀 防护
链接地址:https://www.31ppt.com/p-2852118.html