MBR技术在小区中水回用中的应用论文.doc
《MBR技术在小区中水回用中的应用论文.doc》由会员分享,可在线阅读,更多相关《MBR技术在小区中水回用中的应用论文.doc(13页珍藏版)》请在三一办公上搜索。
1、MBR技术在小区中水回用中的应用随着经济的发展和城市化进程的加快,城市缺水问题尤为突出。从保障居住小区供水的可靠性和改善周围环境质量上来看,在缺水地区建设小区中水系统是最为经济有效的方法。污水处理技术是污水资源化回用的前提条件,根据小区的污水特点和整体规范要求,选择简单高效、经济合理的处理方法对于实施中水回用至关重要。膜生物反应器(MBR)是目前公认的水处理高新技术,它综合了膜处理技术和生活处理技术的优点,具有流程简单、出水水质好、运行管理简单、占地少等优点,是小区污水回用的适用技术,目前该技术已在德国、美国、日本等国家广泛应用于污水处理和再利用领域。MBR的组成从整体结构上看,MBR主要由膜
2、组件、生物反应器和泵三部分组成,其中生物反应器是污染物降解的主要场所,膜组件相当于生物处理系统中的二沉池,起固液分离的作用,泵是系统出水的动力来源。根据膜组件的设置位置,可将MBR分为一体式和分置式两类。前者是将膜组件放置在生物反应器的内部,后者是把膜组件与生物反应器分开设置,显然,这种分置式的MBR因为增加了污泥回流泵和维持一定的膜面流速而存在动力消耗大、系统运行费用高的问题,与之相比,一体式MBR的膜表面错流是由曝气器产生的空气搅动产生,不需污泥回流系统,因而系统相对简单、能耗较低,这也是目前小区中水回用处理工艺中通常采用的形式。工艺特点MBR工艺与其他生物处理工艺相比,具有以下特点:(1
3、)出水水质好,稳定性高膜过渡出水使得生物反应器内获得比普通活性污泥法高得多的生物浓度,极大地提高了生物降解能力和抗负荷冲击能力。同时,污泥停留时间较长,这也为难降解有机物分解菌和硝化菌等增殖速度慢的微生物得以在反应器内繁殖富集,特别是对难降解有机物和氨氮的去除可以取得理想效果。另一方面,膜分离对小于膜孔径有有机大分子物质的截留作用,能够确保滤后出水在除菌、消除悬浮物和降低BOD方面很稳定。(2)占地少膜生物反应器可以维持较高的污泥浓度,通常MLSS为820g/L,是传统生物处理的2.55倍,同时系统省去了二沉池和污泥回流设备,因而占地面积省。(3)操作维护简单膜分离单元工艺简单,出水和运行不受
4、污泥泥膨胀等因素的影响,操作维护简单方便,且易于实现自动控制管理。(4)污泥处水费用低系统污泥浓度高,泥龄长,这意味着排泥量少,产泥量仅占传统工艺的30%,这对后续的污泥处理极为有利。经济分析MBR工艺具有出水水质好、运行稳定、节省占地面积、易于管理维护等特点,出水消毒后可直接回用,与传统的中水处理工艺(二级生物处理+混凝沉淀+过滤+消毒)相比具有明显的经济优势,其主要表现在:(1)MBR工艺容积负荷高,无二沉池,基建投资省;(2)污泥产量低,后期处理投资与处置费用低;(3)出水水质好,省去了三级处理;(4)随着膜技术的发展,膜的价格会不断下降、性能会更好;(5)占地面积小,在需要征地和空间有
5、限的情况下,更显优越;(6)因工艺简单、维护管理方便,其潜在的运行管理费用较低。在水资源日益紧张的今天,将处理后的水回用于绿化、洗车和冲厕,其应用前景广泛。MBR工艺作为一种新型、高效的水处理技术,具有处理效果好、出水水质稳定、设备简单、占地面积少和操作方便等优点,这是其他传统工艺无法比拟的。相信随着小区中水设施建设的逐步推进,MBR技术的应用将更为广泛。MBR技术介绍MBR 工艺的组成和原理 一、MBR 工艺的组成 膜 - 生物反应器主要由膜分离组件及生物反应器两部分组成。通常提到的膜 - 生物反应器实际上是三类反应器的总称: 曝气膜 - 生物反应器 (Aeration Membrane B
6、ioreactor, AMBR) ; 萃取膜 - 生物反应器( Extractive Membrane Bioreactor, EMBR ); 固液分离型膜 - 生物反应器( Solid/Liquid Separation Membrane Bioreactor, SLSMBR, 简称 MBR )。二、曝气膜 - 生物反应器 曝气膜 - 生物反应器最早见于 Cote.P 等 1988 年报道,采用透气性致密膜(如硅橡胶膜)或微孔膜(如疏水性聚合膜),以板式或中空纤维式组件,在保持气体分压低于泡点( Bubble Point )情况下,可实现向生物反应器的无泡曝气。该工艺的特点是提高了接触时间和
7、传氧效率,有利于曝气工艺的控制,不受传统曝气中气泡大小和停留时间的因素的影响。三、萃取膜 - 生物反应器萃取膜 - 生物反应器 又称为 EMBR ( Extractive Membrane Bioreactor )。因为高酸碱度或对生物有毒物质的存在,某些工业废水不宜采用与微生物直接接触的方法处理;当废水中含挥发性有毒物质时,若采用传统的好氧生物处理过程,污染物容易随曝气气流挥发,发生气提现象,不仅处理效果很不稳定,还会造成大气污染。为了解决这些技术难题,英国学者 Livingston 研究开发了 EMB 。其工艺流程见图 2 。废水与活性污泥被膜隔开来,废水在膜内流动,而含某种专性细菌的活性
8、污泥在膜外流动,废水与微生物不直接接触,有机污染物可以选择性透过膜被另一侧的微生物降解。由于萃取膜两侧的生物反应器单元和废水循环单元是各自独立,各单元水流相互影响不大,生物反应器中营养物质和微生物生存条件不受废水水质的影响,使水处理效果稳定。系统的运行条件如 HRT 和 SRT 可分别控制在最优的范围,维持最大的污染物降解速率。 四、固液分离型膜 - 生物反应器固液分离型膜 - 生物反应器是在水处理领域中研究得最为广泛深入的一类膜 - 生物反应器,是一种用膜分离过程取代传统活性污泥法中二次沉淀池的水处理技术。在传统的废水生物处理技术中,泥水分离是在二沉池中靠重力作用完成的,其分离效率依赖于活性
9、污泥的沉降性能,沉降性越好,泥水分离效率越高。而污泥的沉降性取决于曝气池的运行状况,改善污泥沉降性必须严格控制曝气池的操作条件,这限制了该方法的适用范围。由于二沉池固液分离的要求,曝气池的污泥不能维持较高浓度,一般在 1.53.5g/L 左右,从而限制了生化反应速率。水力停留时间( HRT )与污泥龄( SRT )相互依赖,提高容积负荷与降低污泥负荷往往形成矛盾。系统在运行过程中还产生了大量的剩余污泥,其处置费用占污水处理厂运行费用的 25% 40% 。传统活性污泥处理系统还容易出现污泥膨胀现象,出水中含有悬浮固体,出水水质恶化。针对上述问题, MBR 将分离工程中的膜分离技术与传统废水生物处
10、理技术有机结合,大大提高了固液分离效率,并且由于曝气池中活性污泥浓度的增大和污泥中特效菌 ( 特别是优势菌群 ) 的出现,提高了生化反应速率。同时,通过降低 F/M 比减少剩余污泥产生量(甚至为零),从而基本解决了传统活性污泥法存在的许多突出问题。 五、MBR工艺类型 以下讨论的均为固液分离型膜 - 生物反应器。 根据膜组件和生物反应器的组合方式,可将 膜 - 生物反应器 分为分置式、一体式以及复合式三种基本类型。分置式和一体式的 MBR 请参见图 3 。分置式膜 - 生物反应器把膜组件和生物反应器分开设置,如图 3 所示。生物反应器中的混合液经循环泵增压后打至膜组件的过滤端,在压力作用下混合
11、液中的液体透过膜,成为系统处理水;固形物、大分子物质等则被膜截留,随浓缩液回流到生物反应器内。分置式膜 - 生物反应器的特点是运行稳定可靠,易于膜的清洗、更换及增设;而且膜通量普遍较大。但一般条件下为减少污染物在膜表面的沉积,延长膜的清洗周期,需要用循环泵提供较高的膜面错流流速,水流循环量大、动力费用高 (Yamamoto, 1989) ,并且泵的高速旋转产生的剪切力会使某些微生物菌体产生失活现象 ( Brockmann and Seyfried, 1997 ) 。一体式膜 - 生物反应器是把膜组件置于生物反应器内部,如图 4 所示。进水进入膜 - 生物反应器,其中的大部分污染物被混合液中的活
12、性污泥去除,再在外压作用下由膜过滤出水。这种形式的膜 - 生物反应器由于省去了混合液循环系统,并且靠抽吸出水,能耗相对较低;占地较分置式更为紧凑,近年来在水处理领域受到了特别关注。但是一般膜通量相对较低,容易发生膜污染,膜污染后不容易清洗和更换。 复合式膜 - 生物反应器在形式上也属于一体式膜 - 生物反应器,所不同的是在生物反应器内加装填料,从而形成复合式膜 - 生物反应器,改变了反应器的某些性状,如图 5 所示: MBR 工艺的特点 与许多传统的生物水处理工艺相比, MBR 具有以下主要特点: 一、出水水质优质稳定由于膜的高效分离作用,分离效果远好于传统沉淀池,处理出水极其清澈, 悬浮物和
13、浊度接近于零,细菌和病毒被大幅去除 ,出水水质优于建设部颁发的生活杂用水水质标准( CJ25.1-89 ),可以直接作为非饮用市政杂用水进行回用。同时,膜分离也使微生物被完全被截流在生物反应器内, 使得系统内能够维持较高的微生物浓度,不但 提高了反应装置对污染物的整体去除效率,保证了良好的出水水质,同时反应器 对进水负荷(水质及水量)的各种变化具有很好的适应性,耐冲击负荷,能够稳定获得优质的出水水质。 二、剩余污泥产量少 该工艺可以在高容积负荷、低污泥负荷下运行,剩余污泥产量低(理论上可以实现零污泥排放),降低了污泥处理费用。 三、占地面积小,不受设置场合限制 生物反应器内能维持高浓度的微生物
14、量,处理装置容积负荷高,占地面积大大节省; 该工艺流程简单、结构紧凑、占地面积省,不受设置场所限制,适合于任何场合,可做成地面式、半地下式和地下式。 四、可去除氨氮及难降解有机物 由于微生物被完全截流在生物反应器内,从而有利于增殖缓慢的微生物如硝化细菌的截留生长,系统硝化效率得以提高。同时,可增长一些难降解的有机物在系统中的水力停留时间,有利于难降解有机物降解效率的提高。 五、操作管理方便,易于实现自动控制 该工艺实现了水力停留时间( HRT )与污泥停留时间( SRT )的完全分离,运行控制更加灵活稳定,是污水处理中容易实现装备化的新技术,可实现微机自动控制,从而使操作管理更为方便。 六、易
15、于从传统工艺进行改造该工艺可以作为传统污水处理工艺的深度处理单元,在城市二级污水处理厂出水深度处理(从而实现城市污水的大量回用)等领域有着广阔的应用前景。膜 - 生物反应器也存在一些不足。主要表现在以下几个方面: 膜造价高,使膜 - 生物反应器的基建投资高于传统污水处理工艺; 膜污染容易出现,给操作管理带来不便; 能耗高:首先 MBR 泥水分离过程必须保持一定的膜驱动压力,其次是 MBR 池中 MLSS 浓度非常高,要保持足够的传氧速率,必须加大曝气强度,还有为了加大膜通量、减轻膜污染,必须增大流速,冲刷膜表面,造成 MBR 的能耗要比传统的生物处理工艺高。MBR 工艺用膜 膜可以由很多种材料
16、制备,可以是液相、固相甚至是气相的。目前使用的分离膜绝大多数是固相膜。根据孔径不同可分为:微滤膜、超滤膜、纳滤膜和反渗透膜;根据材料不同,可分为无机膜和有机膜,无机膜主要是微滤级别膜。膜可以是均质或非均质的,可以是荷电的或电中性的。广泛用于废水处理的膜主要是由有机高分子材料制备的固相非对称膜。 膜的分类如图所示: 一、 MBR 膜材质 1、高分子有机膜材料: 聚烯烃类、聚乙烯类、聚丙烯腈、聚砜类、芳香族聚酰胺、含氟聚合物等。 有机膜成本相对较低,造价便宜,膜的制造工艺较为成熟,膜孔径和形式也较为多样,应用广泛,但运行过程易污染、强度低、使用寿命短。 2、无机膜 :是固态膜的一种,是由无机材料,
17、如金属、金属氧化物、陶瓷、多孔玻璃、沸石、无机高分子材料等制成的半透膜。目前在 MBR 中使用的无机膜多为陶瓷膜,优点是:它可以在 pH 014 、压力 P10MPa 、温度 10mm; 毛细管式 0.510.0mm ;中空纤维式 。名称/项目 中空纤维式 毛细管式 螺旋卷式 平板式 圆管式 价格(元 /m 3 ) 40150 150800 250800 8002500 4001500 冲填密度 高 中 中 低 低 清洗 难 易 中 易 易 压力降 高 中 中 中 低 可否高压操作 可 否 可 较难 较难 膜形式限制 有 有 无 无 无 MBR 工艺中常用的膜组件形式有:板框式、圆管式、中空纤
18、维式。板框式:是 MBR 工艺最早应用的一种膜组件形式,外形类似于普通的板框式压滤机。优点是:制造组装简单,操作方便,易于维护、清洗、更换。缺点是:密封较复杂,压力损失大,装填密度小。圆管式:是由膜和膜的支撑体构成,有内压型和外压型两种运行方式。实际中多采用内压型,即进水从管内流入,渗透液从管外流出。膜直径在 624mm 之间。圆管式膜优点是:料液可以控制湍流流动,不易堵塞,易清洗,压力损失小。缺点是:装填密度小。中空纤维式:组装形式如下图所示: 图 外径一般为 40250 m ,内径为 2542m 。优点是:耐压强度高,不易变形。在 MBR 中,常把组件直接放入反应器中,不需耐压容器,构成浸
19、没式膜 - 生物反应器。一般为外压式膜组件。优点是:装填密度高;造价相对较低;寿命较长,可以采用物化性能稳定,透水率低的尼龙中空纤维膜;膜耐压性能好,不需支撑材料。缺点是:对堵塞敏感,污染和浓差极化对膜的分离性能有很大影响。MBR 膜组件设计的一般要求: 对膜提供足够的机械支撑,流道通畅,没有流动死角和静水区; 能耗较低,尽量减少浓差极化,提高分离效率,减轻膜污染; 尽可能高的装填密度,安装,清洗、更换方便; 具有足够的机械强度、化学和热稳定性。膜组件的选用要综合考虑其成本,装填密度、应用场合、系统流程、膜污染及清洗、使用寿命等。MBR 的应用领域 进入 90 年代中后期,膜 - 生物反应器在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- MBR 技术 小区 中水 中的 应用 论文
链接地址:https://www.31ppt.com/p-2807413.html