《余数问题题库学生版.doc》由会员分享,可在线阅读,更多相关《余数问题题库学生版.doc(11页珍藏版)》请在三一办公上搜索。
1、精选优质文档-倾情为你奉上5-6余数问题教学目标余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。知识点拨一、带余除法的定义及性质一般地,如果a是整数,b是整数(b0),若有ab=qr,也就是abqr, 0rb;我们称上面的除法算式为一个带余除法算式。这里:(1)当时:我们称a可以被b整除,q称为a除以b
2、的商或完全商(2)当时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且可以看出余数一定要比除数小。二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大
3、时,所求的余数等于余数之和再除以c的余数。例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数,即2。2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。例如:23,16除以5的余数分别是3和1,所以2316除以5的余数等于31=3。当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。例如:23,19除以5的余数分别是3和4,所以2319除以5的余数等于34除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:ab ( mod
4、m ),左边的式子叫做同余式。同余式读作:a同余于b,模m。由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有ab ( mod m ),那么一定有abmk,k是整数,即m|(ab)三、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本花拉子米算术,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为717890
5、2除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。上述检验方法恰好用到的就是我们前面所讲的余数的加法定理,即如果这个等式是正确的,那么左边几个加数除以9的余数的和再除以9的余数一定与等式右边和除以9的余数相同。而我们在求一个自然数除以9所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是一个9一个9的找并且划去,所以这种方法被称作“弃九法”。所以我们总结出弃九法原理:任何一个整数模9同余于它的各数位上数字之和。以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和
6、,再求这个和被9除的余数即可。利用十进制的这个特性,不仅可以检验几个数相加,对于检验相乘、相除和乘方的结果对不对同样适用注意:弃九法只能知道原题一定是错的或有可能正确,但不能保证一定正确。例如:检验算式9+9=9时,等式两边的除以9的余数都是0,但是显然算式是错误的但是反过来,如果一个算式一定是正确的,那么它的等式2两端一定满足弃九法的规律。这个思想往往可以帮助我们解决一些较复杂的算式迷问题。四、中国剩余定理1.中国古代趣题中国数学名著孙子算经里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。”此类问题我们可以称为“物不知其数”类型
7、,又被称为“韩信点兵”。韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人。刘邦茫然而不知其数。 我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少? 首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。 孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题
8、的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。2.核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以孙子算经中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。先由,即5和7的最小公倍数出发,先看35除以3余2,不符合要求,那么就继续看5和7的“下一个”
9、倍数是否可以,很显然70除以3余1类似的,我们再构造一个除以5余1,同时又是3和7的公倍数的数字,显然21可以符合要求。最后再构造除以7余1,同时又是3,5公倍数的数字,45符合要求,那么所求的自然数可以这样计算:,其中k是从1开始的自然数。也就是说满足上述关系的数有无穷多,如果根据实际情况对数的范围加以限制,那么我们就能找到所求的数。例如对上面的问题加上限制条件“满足上面条件最小的自然数”,那么我们可以计算得到所求如果加上限制条件“满足上面条件最小的三位自然数”,我们只要对最小的23加上3,5,7即可,即23+105=128。例题精讲模块一、带余除法的定义和性质【例 1】 (第五届小学数学报
10、竞赛决赛)用某自然数去除,得到商是46,余数是,求和【巩固】 除以一个两位数,余数是求出符合条件的所有的两位数【巩固】 (清华附中小升初分班考试)甲、乙两数的和是,甲数除以乙数商余,求甲、乙两数【巩固】 一个两位数除310,余数是37,求这样的两位数。【例 2】 (年全国小学数学奥林匹克试题)有两个自然数相除,商是,余数是,已知被除数、除数、商与余数之和为,则被除数是多少?【巩固】 (2002年全国小学数学奥林匹克试题)两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_【巩固】 用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求
11、这2个自然数各是多少?【例 3】 (2000年“祖冲之杯”小学数学邀请赛试题)三个不同的自然数的和为2001,它们分别除以19,23,31所得的商相同,所得的余数也相同,这三个数是_,_,_。【巩固】 (2004年福州市“迎春杯”小学数学竞赛试题)一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3倍,这个自然数是_.【例 4】 (1997年我爱数学少年数学夏令营试题)有48本书分给两组小朋友,已知第二组比第一组多5人如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够问:第二组有多少人? 【巩固】
12、一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数模块二、三大余数定理的应用【例 5】 有一个大于1的整数,除所得的余数相同,求这个数.【巩固】 有一个整数,除39,51,147所得的余数都是3,求这个数.【巩固】 有一个自然数,除345和543所得的余数相同,且商相差33求这个数是多少?【巩固】 (2001年全国小学数学奥林匹克试题)若2836,4582,5164,6522四个自然数都被同一个自然数相除,所得余数相同且为两位数,除数和余数的和为_【巩固】 已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?【巩固】 在小于1000的自然数中,分别除以1
13、8及33所得余数相同的数有多少个?(余数可以为0) 【巩固】 (2008年仁华考题)一个三位数除以17和19都有余数,并且除以17后所得的商与余数的和等于它除以19后所得到的商与余数的和那么这样的三位数中最大数是多少,最小数是多少?【例 6】 两位自然数与除以7都余1,并且,求【巩固】 学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同请问学校共有多少个班?【巩固】 (2000年全国小学数学奥林匹克试题)在除13511,13903及14589时能剩下相同余数的最大整数是_【例 7】 (2003年南京市少年数学智力冬令营试题)
14、与的和除以7的余数是_【巩固】 (2004年南京市少年数学智力冬令营试题)在1995,1998,2000,2001,2003中,若其中几个数的和被9除余7,则将这几个数归为一组这样的数组共有_组【例 8】 (2005年全国小学数学奥林匹克试题)有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是_【巩固】 (2002年全国小学数学奥林匹克试题)用自然数n去除63,91,129得到的三个余数之和为25,那么n=_【巩固】 号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数。那么打球盘数最多的运动员打
15、了多少盘?【例 9】 (2002年小学生数学报数学邀请赛试题)六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店购买成语大词典一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本这种成语大词典的定价是_元【巩固】 (2000年全国小学数学奥林匹克试题)商店里有六箱货物,分别重15,16,18,19,20,31千克,两个顾客买走了其中的五箱已知一个顾客买的货物重量是另一个顾客的2倍,那么商店剩下的一箱货物重量是_千克【巩固】 (1997年全国小学数学奥林匹克试题)六张卡片上分别标上1193、1258、
16、1842、1866、1912、2494六个数,甲取3张,乙取2张,丙取1张,结果发现甲、乙各自手中卡片上的数之和一个人是另个人的2倍,则丙手中卡片上的数是_(第五届小数报数学竞赛初赛) 【例 10】 求的余数【巩固】 (华罗庚金杯赛模拟试题)求除以17的余数【巩固】 求的最后两位数【巩固】 求的余数【巩固】 除以7的余数是多少?【巩固】 除以13所得余数是_.【巩固】 求除以7的余数【巩固】 (2007年实验中学考题)除以7的余数是多少?【巩固】 被除所得的余数是多少?【巩固】 (2008年奥数网杯)已知,问:除以13所得的余数是多少?【巩固】 除以41的余数是多少?【巩固】 除以10所得的余
17、数为多少?【例 11】 求所有的质数p,使得与也是质数【巩固】 在图表的第二行中,恰好填上这十个数,使得每一竖列上下两个因数的乘积除以11所得的余数都是3【巩固】 (2000年“华杯赛”试题)3个三位数乘积的算式 (其中), 在校对时,发现右边的积的数字顺序出现错误,但是知道最后一位6是正确的,问原式中的是多少?【例 12】 一个大于1的数去除290,235,200时,得余数分别为,则这个自然数是多少?【巩固】 一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【例 13】 甲、乙、丙三数分别为603,939,393某数除甲数所得
18、余数是除乙数所得余数的2倍,除乙数所得余数是除丙数所得余数的2倍求等于多少?【巩固】 一个自然数除429、791、500所得的余数分别是、,求这个自然数和的值. 【巩固】 已知60,154,200被某自然数除所得的余数分别是,求该自然数的值模块三、余数综合应用【例 14】 著名的斐波那契数列是这样的:1、1、2、3、5、8、13、21这串数列当中第2008个数除以3所得的余数为多少?【巩固】 (2009年走美初赛六年级)有一串数:1,1,2,3,5,8,从第三个数起,每个数都是前两个数之和,在这串数的前2009个数中,有几个是5的倍数?【例 15】 (圣彼得堡数学奥林匹克试题)托玛想了一个正整
19、数,并且求出了它分别除以3、6和9的余数现知这三余数的和是15试求该数除以18的余数【巩固】 (2005年香港圣公会小学数学奥林匹克试题)一个家庭,有父、母、兄、妹四人,他们任意三人的岁数之和都是3的整数倍,每人的岁数都是一个质数,四人岁数之和是100,父亲岁数最大,问:母亲是多少岁? 【例 16】 (华杯赛试题)如图,在一个圆圈上有几十个孔(不到100个),小明像玩跳棋那样,从A孔出发沿着逆时针方向,每隔几孔跳一步,希望一圈以后能跳回到A孔他先试着每隔2孔跳一步,结果只能跳到B孔他又试着每隔4孔跳一步,也只能跳到B孔最后他每隔6孔跳一步,正好跳回到A孔,你知道这个圆圈上共有多少个孔吗? 【巩
20、固】 (1997年全国小学数学奥林匹克试题)将依次写到第1997个数字,组成一个1997位数,那么此数除以9的余数是 _【巩固】 (2002年香港圣公会小学数学奥林匹克试题)有三所学校,高中A校比B校多10人,B校比C校多10人三校共有高中生2196人有一所学校初中人数是高中人数的2倍;有一所学校初中人数是高中人数的1.5倍;还有一所学校高中、初中人数相等三所学校总人数是5480人,那么A校总人数是_人【例 17】 设是质数,证明:,被除所得的余数各不相同【巩固】 试求不大于100,且使能被11整除的所有自然数n的和【巩固】 若为自然数,证明【例 18】 设n为正整数,k被7除余数为2,k被1
21、1除余数为3,求n的最小值【巩固】 有三个连续自然数,其中最小的能被15整除,中间的能被17整除,最大的能被19整除,请写出一组这样的三个连续自然数【巩固】 一个自然数被7,8,9除的余数分别是1,2,3,并且三个商数的和是570,求这个自然数【例 19】 (2008年西城实验考题)从1,2,3,n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为多少? 【巩固】 从1,2,3,4,2007中取N个不同的数,取出的数中任意三个的和能被15整除N最大为多少?【例 20】 将自然数1,2,3,4依次写下去,若最终写到2000,成为,那么这个自然数除以99余几?【巩固】 将1至200
22、8这2008个自然数,按从小到大的次序依次写出,得一个多位数:1234567891011121320072008,试求这个多位数除以9的余数【例 21】 (2008年清华附中考题)已知n是正整数,规定,令,则整数m除以2008的余数为多少?【巩固】 的末三位数是多少?【例 22】 有2个三位数相乘的积是一个五位数,积的后四位是1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是8,求两个三位数的和。【例 23】 设的各位数字之和为,的各位数字之和为,的各位数字之和为,的各位数字之和为,那么?模块四、中国剩余定理【例 24】 一个自然数在1000和1200之间,且被3除余1,被5
23、除余2,被7除余3,求符合条件的数【巩固】 (首师大附中实验班分班测试题)有一个数,除以3余2,除以4余1,问这个数除以12余几?【例 25】 一个大于10的自然数,除以5余3,除以7余1,除以9余8,那么满足条件的自然数最小为多少? 【巩固】 一个小于200的数,它除以11余8,除以13余10,这个数是多少?【巩固】 一个大于10的数,除以3余1,除以5余2,除以11余7,问满足条件的最小自然数是多少?【例 26】 一个数除以3余2,除以5余3,除以7余4,问满足条件的最小自然数为多少?【巩固】 有连续的三个自然数、,它们恰好分别是9、8、7的倍数,求这三个自然数中最小的数至少是多少?【例 27】 在200至300之间,有三个连续的自然数,其中,最小的能被3整除,中间的能被7整除,最大的能被13整除,那么这样的三个连续自然数分别是多少?【巩固】 对任意的自然数n,证明能被1897整除 【例 28】 一个数除以3、5、7、11的余数分别是2、3、4、5,求符合条件的最小的数专心-专注-专业
链接地址:https://www.31ppt.com/p-2795389.html