《碳酸丙烯酯(PC)脱碳填料塔的工艺设计.doc》由会员分享,可在线阅读,更多相关《碳酸丙烯酯(PC)脱碳填料塔的工艺设计.doc(29页珍藏版)》请在三一办公上搜索。
1、精选优质文档-倾情为你奉上碳酸丙烯酯(PC)脱碳填料塔的工艺设计学 校 上海工程技术大学专 业 姓 名 学 号 上海工程技术大学48000t/a合成氨碳酸丙烯酯(PC)脱碳填料塔设计目 录碳酸丙烯酯(PC)脱碳填料塔设计工艺设计任务书 3一、设计题目 3二、操作条件 3三、设计内容 3四、基础数据 4八、设计概要表 27九、对本设计的评价 28化工原理课程设计任务书碳酸丙烯酯(PC)脱碳填料塔的工艺设计一、设计题目设计一座碳酸丙烯酯(PC)脱碳填料塔,要求年产合成氨48000t/a。二、操作条件1.每吨氨耗变换气取4300Nm3变换气/ t氨;2.变换气组成为:CO2:28.0;CO:2.5;
2、H2:47.2;N2:22.3。(均为体积%,下同。其它组分被忽略);3.要求出塔净化气中CO2的浓度不超过0.5%;4.PC吸收剂的入塔浓度根据操作情况自选;5.气液两相的入塔温度均选定为30;6.操作压强为1.6MPa;7.年工作日330天,每天24小时连续运行。三、设计内容1.设计方案的确定及工艺流程的说明2.填料吸收塔的工艺计算3.塔和塔板主要工艺结构的设计计算4.填料吸收塔附属结构的选型与设计5.塔的工艺计算结果汇总一览表6.吸收塔的工艺流程图7.填料吸收塔与液体再分布器的工艺条件图8.对本设计的评述或对有关问题的分析与讨论。四、基础数据1.碳酸丙烯酯(PC)的物理性质正常沸点,()
3、蒸汽压133.32-1Pa粘度,mPas分子量20430382050102.090.10.242.761.62温度,()015254055(kg/m3)122412071198118411692.比热计算式 3.CO2在碳酸丙烯酯(PC)中的溶解度温度t,()2526.737.84050亨利系数E101.3-1kPa81.1381.7101.7103.5120.84.CO2在碳酸丙烯酯(PC)中的溶解热可近似按下式计算(以表示)5.其他物性数据可查化工原理附录。设计依据:吸收是利用各组分溶解度的不同而分离气体混合物的操作。混合气体与适当的液体接触,气体中的一个或几个组分便溶解于液体中而形成溶液
4、,于是原组分的一分离。对与此题中的易溶气体是CO2 。依题意:年工作日以330天,每天以24小时连续运行计,有:合成氨:48000t/a= 145.5t/d=6.06t/h变换气: 4300m3(标)变换气/t氨(简记为Nm3/t)V = 6.064300=26058 m3变换气组成及分压如下表进塔变换气CO2COH2N2合计体积百分数,%28.02.547.222.3100组分分压,MPa0.4480.0400.7550.3571.600组分分压,kgf/cm24.5680.4087.7013.63816.32一、计算前的准备1.CO2在PC中的溶解度关系CO2在PC中亨利系数数据温度t,(
5、)2526.737.84050亨利系数E101.3-1kPa81.1381.7101.7103.5120.8作图得:亨利系数与温度近似成直线,且kPa因为高浓度气体吸收,故吸收塔内CO2的溶解热不能被忽略。现假设出塔气体的温度为,出塔液体的温度为,并取吸收饱和度(定义为出塔溶液浓度对其平衡浓度的百分数)为70%,然后利用物料衡算结合热量衡算验证上述温度假设的正确性在40下,CO2在PC中的亨利系数E40=103.5101.3 kPa=10485 kPa1出塔溶液中CO2的浓度(假设其满足亨利定律)(摩尔分数)2根据吸收温度变化的假设,在塔内液相温度变化不大,可取平均温度35下的CO2在PC中溶
6、解的亨利系数作为计算相平衡关系的依据。即: kPaCO2在PC中溶解的相平衡关系,即:式中:为摩尔比,kmolCO2/kmolPC;为CO2的分压,kgf/cm2;T为热力学温度,K。用上述关联式计算出塔溶液中CO2的浓度有与前者结果相比要小,为安全起见,本设计取后者作为计算的依据。结论:出料(摩尔分数)2.PC密度与温度的关系利用题给数据作图,得密度与温度的关联表达式为(式中t为温度,;为密度,kg/m3)温度,()015254055(kg/m3)122412071198118411693.PC蒸汽压的影响根据变换气组成及分压可知,PC蒸汽压与操作总压及CO2的气相分压相比均很小,故可忽略。
7、4.PC的粘度 mPas(T为热力学温度,K)5.工艺流程确定:本次吸收采用逆流吸收的方法。二、物料衡算1.各组分在PC中的溶解量查各组分在操作压力为1.6MPa、操作温度为40下在PC中的溶解度数据,并取其相对吸收饱和度均为70%,将计算所得结果列于下表(亦可将除CO2以外的组分视为惰气而忽略不计,而只考虑CO2的溶解):CO2溶解量的计算如下:各个溶质溶解量的计算如下:(以CO2为例)通过第一部分已知CO2在40的平衡溶解度 Nm3/m3PC式中:1184为PC在40时的密度,102.09为PC的相对摩尔质量。CO2的溶解量为(10.44-0.15)0.7=7.203 Nm3/m3PC组分
8、CO2COH2N2合计组分分压,MPa0.4480.0400.7550.3571.60溶解度,Nm3/m3PC10.440.0160.2230.22310.90溶解量,Nm3/m3PC7.2030.0110.1560.1567.526溶解气所占的百分数%95.710.152.072.07100.00说明:进塔吸收液中CO2的残值取0.15 Nm3/m3PC,故计算溶解量时应将其扣除。其他组分溶解度就微小,经解吸后的残值可被忽略。平均分子量:入塔混合气平均分子量:溶解气体的平均分子量:2.溶剂夹带量Nm3/m3PC以0.2 Nm3/m3PC计,各组分被夹带的量如下:CO2:0.20.28=0.0
9、56 Nm3/m3PCCO: 0.20.025=0.005 Nm3/m3PCH2: 0.20.472=0.0944 Nm3/m3PCN2: 0.20.223=0.0446 Nm3/m3PC3.溶液带出的气量Nm3/m3PC各组分溶解量:CO2: 7.203 Nm3/m3PC 95.71%CO: 0.011 Nm3/m3PC 0.15%H2: 0.156 Nm3/m3PC 2.07%N2: 0.156Nm3/m3PC 2.07%7.526 Nm3/m3PC 100%夹带量与溶解量之和:CO2:0.056+7.203=7.259 Nm3/m3PC 93.96%CO:0.005+0.011=0.01
10、6 Nm3/m3PC 0.21%H2:0.0944+0.156=0.250 Nm3/m3PC 3.23%N2:0.0446+0.156=0.201 Nm3/m3PC 2.60%7.726 Nm3/m3PC 100%4.出脱碳塔净化气量以分别代表进塔、出塔及溶液带出的总气量,以分别代表CO2相应的体积分率,对CO2作物料衡算有:V1 =26058 Nm3/ h联立两式解之得V3=V1(y1-y2)/(y3-y2)=43006.06(0.280.005)/(0.93960.005)=7667Nm3/hV2 = V1 - V3 =18391 Nm3/ h5.计算PC循环量因每1 m3PC 带出CO2
11、为7.259 Nm3 ,故有:L=V3y3/7.259=76670.9396/7.259=992m3/h操作的气液比为V1/L=26058/992=26.276.验算吸收液中CO2残量为0.15 Nm3/m3PC时净化气中CO2的含量取脱碳塔阻力降为0.3kgf/cm2,则塔顶压强为16.32-0.3=16.02 kgf/cm2,此时CO2的分压为 kgf/cm2,与此分压呈平衡的CO2液相浓度为: 式中:1193为吸收液在塔顶30时的密度,近似取纯PC液体的密度值。计算结果表明,当出塔净化气中CO2的浓度不超过0.5%,那入塔吸收液中CO2的极限浓度不可超过0.216 Nm3/m3PC,本设
12、计取值正好在其所要求的范围之内,故选取值满足要求。入塔循环液相CO2:9920.157.出塔气体的组成出塔气体的体积流量应为入塔气体的体积流量与PC带走气体的体积流量之差。CO2:260580.28-7.259992=95.31Nm3/h 0.50%CO: 260580.025-0.016992=635.58Nm3/h 3.46%H2: 260580.472-0.250992=12049.38Nm3/h 65.53%N2: 260580.223-0.201992=5610.54Nm3/h 30.51%18391.81Nm3/h 100%计算数据总表出脱碳塔净化气量进塔带出气量(V1)Nm3/h
13、出塔气量(V2)Nm3/h溶液带出的总气量(V3)Nm3/h26058183917667气液比26.26入塔气体平均分子量20.208溶解气体平均分子量42.78PC中的溶解量(溶解气量及其组成)40组分CO2COH2N2总量溶解度,Nm3/m3PC10.44 0.02 0.22 0.22 10.90 溶解量,Nm3/m3PC7.20 0.01 0.16 0.16 7.53 溶解体积流量Nm3/h7142.4 9.92 158.72 158.72 7469.76 溶解气所占的百分数%95.71 0.15 2.07 2.07 100.00 出塔液相带出气量及其组成 40溶解量,Nm3/m3PC7
14、.26 0.02 0.25 0.20 7.73 体积流量Nm3/h7203.9116.10 247.64 199.347667溶解气所占的百分数%93.96 0.21 3.23 2.60 100.00 入塔气相及其组成 30体积流量Nm3/h7296.24 651.45 12299.38 5810.934 26058溶解气所占的百分数%28.00 2.50 47.20 22.30 100.00 出塔气相的组成 35体积流量Nm3/h95.31 635.58 12049.385610.5418391溶解气所占的百分数%0.50 3.46 65.53 30.51 100.00 入塔液相及其组成 3
15、0体积流量Nm3/h149.00 149溶解气所占的百分数%100.00 100三、热量衡算在物料衡算中曾假设出塔溶液的温度为40,现通过热量衡算对出塔溶液的温度进行校核,看其是否在40之内。否则,应加大溶剂循环量以维持出塔溶液的温度不超过40。具体计算步骤如下:1.混合气体的定压比热容因未查到真实气体的定压比热容,故借助理想气体的定压比热容公式近似计算。理想气体的定压比热容:,其温度系数如下表:系数abcdCp1(30)Cp2(32)CO24.7281.75410-2-1.33810-54.09710-98.929/37.388.951/37.48CO7.373-0.30710-26.662
16、10-6-3.03710-96.969/29.186.97/29.18H26.4832.21510-3-3.29810-61.82610-96.902/28.906.904/28.91N27.440-0.32410-26.410-6-2.7910-96.968/29.186.968/29.18表中Cp的单位为(kcal/kmol)/(kJ/kmol)进出塔气体的比热容Cpv2=Cpiyi =37.480.0050+29.180.0346+28.910.6553+29.180.3051 =29.04 KJ/Kmol2.液体的比热容溶解气体占溶液的质量分率可这样计算:质量分率为其量很少,因此可用纯
17、PC的比热容代之。本设计题目中 kJ/kg文献查得 kJ/kg,据此算得: kJ/kg; kJ/kg本设计采用前者。3.CO2的溶解热kJ/kmolCO2文献查得 kJ/kmolCO2(实验测定值)本设计采用后者。CO2在PC中的溶解量为7.203992=7145Nm3/h=319kmol/h故Qs=14654319=kJ/h4.出塔溶液的温度设出塔气体温度为35,全塔热量衡算有:带入的热量(QV1+QL2)+ 溶解热量(Qs)= 带出的热量(QV2+QL1)Qv1=V1Cpv1(Tv1T0)=2605831.3430/22.4= kJ/hQL2=L2CpL2(TL2T0)=99211931.
18、42630=kJ/hQv2=V2Cpv2(Tv2T0)=1839129.0435/22.4=kJ/hQL1=L1CpL1(TL1T0)=1.44TL1= TL1kJ/h式中:L1=9921193+(7667-0.2992)42.78/22.4= kg/h+=+TL1TL1=32现均按文献值作热量衡算,即取 kJ/kg; kJ/kgQv1=V1Cpv1(Tv1T0)=2605831.3430/22.4= kJ/hQL2=L2CpL2(TL2T0)=99211930.379530=kJ/hQv2=V2Cpv2(Tv2T0)=1839129.0435/22.4=kJ/hQL1=L1CpL1(TL1T
19、0)=0.3894TL1= TL1kJ/h式中:L1=9921193+(7667-0.2992)42.78/22.4= kg/h+=+TL1T L1=39.5 与理论值比较后,取T L1=39.55.最终的衡算结果汇总出塔气相及其组成(35)V2=18391.81Nm3/hCO2COH2N295.31 635.58 12049.38 5610.54 Nm3/h0.50 3.46 65.53 30.51 %QV2=kJ/h入塔液相及其组成(30)L2=992m3/hCO2COH2N2149-Nm3/h-%QL2=kJ/h入塔气相及其组成(30)V1=26058 Nm3/hCO2COH2N2260
20、587296.24 651.45 12299.38 5810.93 Nm3/h28.02.547.222.3%QV1=kJ/h出塔液相带出气量及其组成(40)L1=kg/hCO2COH2N269466526.46 14.59 224.36 180.60 Nm3/h93.960.213.242.60%脱碳塔溶解气量及其组成(40)L1=kg/hCO2COH2N27469.767142.4 9.92 158.72 158.72 Nm3/h95.710.152.072.07%Qs=kJ/h专心-专注-专业四、设备的工艺与结构尺寸的设计计算1确定塔径及相关参数 塔底气液负荷大,依塔底气液负荷条件求取塔
21、径采用Eckert通用关联图法求取泛点气速,并确定操作气速。入塔混合气体的质量流量V=(2605822.4)20.208=23508 kg/h20.208为入塔混合气体的平均分子量11.042为出塔混合气体的平均分子量Mm2 = 440.005+280.0346+20.6553+280.3051= 11.042kg/kmol塔底吸收液的质量流量L=kg/h入塔混合气的密度(未考虑压缩因子)吸收液的密度(40)吸收液的粘度,依下式计算得到:mPas(平均温度35时的值)选mm塑料鲍尔环(米字筋),其湿填料因子,空隙率,比表面积,Bain-Hougen关联式常数。(1)选用Eckert通用关联图法
22、求解关联图的横坐标:(v/l)0.5L/V=(12.83/1184)0./23508=5.408查Eckert通用关联图得纵坐标值为0.0025,即:(2)选用Bain-Hougen关联式求解根据设计u=0.1m/s2求取塔径Vs=26058(0.1013/1.6)(303.15/273.15)=1830m3/h=0.5086m3/sD=(40.5086/3.140.1)0.5=2.545m本次设计取D=2600mm3核算操作气速u=4Vs/3.14D2=40.5086/3.142.62=0.10m/s则操作气体速度取u=0.10m/s合适4 核算径比D/d=26400/50=521015(满
23、足鲍尔环的径比要求)5校核喷淋密度采用聚丙烯填料表面L喷,min=(MWR)at =0.08106.4=8.512m3/(m2.h)L喷=(满足要求)五、填料层高度的计算塔截面积=0.785D2=5.307因其他气体的溶解度很小,故将其他气体看作是惰气并视作为恒定不变,那么,惰气的摩尔流率G=26058(1-0.28)/(22.43600)=0.0438kmol/(m2s)又溶剂的蒸汽压很低,忽略蒸发与夹带损失,并视作为恒定不变,那么有L=9921193/(102.0936005.307)=0.6068kmol/(m2s),吸收塔物料衡算的操作线方程为将上述已知数据代入操作线方程,整理得选用填
24、料层高度表达式H=V / (Kya)采用数值积分法求解,步骤如下:1.将气相浓度在其操作范围内10等份,其等份间距为0.0275,并将各分点的y值代入式(1)计算出对应的x值,并列入后面表格中的第1、2列中。2.计算各分点截面处的气液相流率G=(1+Y)G L=(1+X)L (2)将计算结果列入附表中的3、4列。3.计算的传质系数=1exp-1.45(33/39.1)0.75(/106.48.5248)0.1(106.4/118421.27108)-0.05(/118439.1106.4)0.21由计算知awat=106.4式中:UL=kg/(m . h)、气体、液体的黏度,、气体、液体的密度
25、,、溶质在气体、液体中的扩散系数, R通用气体常数,T系统温度,K填料的总比表面积,填料的润湿比表面积,g重力加速度,1.27108m/h液体的表面张力,填料材质的临界表面张力,填料形状系数上述修正的恩田公式只适用于的情况,由计算得知u0.5uF 气膜吸收系数计算: 气体质量通量为 = 0.940.8862.5510-4 =5.6210-3 = 0.23753.850.8862.5110-4 =2.8410-3液膜吸收系数计算: 液体质量通量为 = 0.560.06 = 0.882= 4.2310-3106.41.451.1 = 0.677= 0.882106.41.450.4 = 108.8
26、8 故修正: =1184/(102.09(1.620430+39.594)101.3=1.2910-3(稀溶液)计算准备:(1)两相摩尔流率与质量流率的转换气相平均分子量为:气相平均分子量为:33.085y+10.915VG=(33.085Y+10.915)G(稀溶液)(2)CO2在气相和液相中的扩散系数气相:分两步进行,定性温度取32.5。首先计算CO2在各组分中的扩散系数,然后再计算其在混合气体中的扩散系数。计算公式如下:DCO2-co=DCO2-H2=DCO2-N2= =(1-0.005)/(0.0346/8.6710-7+0.6553/3.2810-6+0.3051/8.6210-7)
27、=1.67610-6m2/s液相:文献介绍了CO2在PC中扩散系数两个计算公式,定性温度取35。=1.1710-52/s (TK;mPas;Dcm2/s) =1.0110-5 2/s (TK;mPas;Dcm2/s)取大值(3)气液两相的粘度(纯组分的粘度)uG-CO2=1.3410-2(305.5/273.15)0.935=0.015mPas同理:uG-CO=0.018 mPas uG-H2=0.0093 mPas uG-N2=0.018 mPas为0、常压下纯气体组分的粘度,mPas 。m为关联指数(见下表)mmCO21.3410-20.935H20.8410-20.771CO1.6610
28、-20.758N21.6610-20.756气相:(气体混合物的粘度) =(0.280.015440.5+0.0250.018280.5+0.4720.009220.5+0.2230.018280.5)/(0.28440.5+0.025280.5+0.47220.5+0.223280.5)=0.0150 mPas液相: mPas=2.368 mPas(4)吸收液与填料的表面张力吸收液:=39.1 mPas填料:查教材,如聚乙烯塑料 mPas4.气相总传质单元数作CO2在PC中的相平衡曲线将计算结果列表如下:气相CO2的组成y(摩尔分率)0.0050.0500.1000.2000.280气相CO
29、2的分压p(kgf/cm2)0.08160.8161.6323.2634.57030对应的液相平衡组成x0.00080.00840.01690.03370.047235对应的液相平衡组成x0.00080.00780.01560.03110.043640对应的液相平衡组成x0.00070.00720.01440.02880.0404因温度变化不大,故取平均温度下的数值作图得一直线,这说明CO在PC中的溶解情况满足亨利定律。但因操作关系不为直线,故仍需采用图解积分或数值积分。5.气相总传质单元数采用传质单元数的近似简化法计算图中数据源于下表数据,y、x数据由操作线方程(1)计算而得。y*由y*=6
30、.4283x-0.0002计算而得。y10-20.53.256.08.7511.5014.2517.0019.7522.5025.2528.00x10-20.0570.2550.4540.6530.8521.0511.2491.4481.6471.8452.043y*10-20.3471.6242.9024.1795.4566.7328.0109.28810.5611.8413.12654.261.5032.2821.8816.5513.3011.129.5608.6307.4606.720现采用Smipson公式求区域的面积数值积分法(亦可采用图解积分)6.气相总传质单元高度计算:由于对于P
31、C,CO2为易吸收气体,为气膜控制10-7m填料层的有效传质高度=1.652=13.30m设计高度H=1.2913.30=17.153m六、填料层的压降用Eckert通用关联图计算压降横坐标:(前已算出)纵坐标:0.00133查图得:30mmH2O/m七:附属设备及主要附件的选型1.塔壁厚 操作压力为1.6Mpa壁厚: 圆整后取22mm选用 22R钢板2液体分布器液体分布器是保持任一横截面上保证气液均匀分布。本次使用分布较好的槽盘式分布器。它具有集液、分液和分气三个功能,结构紧凑,操作弹性高,应用广泛。3除沫器除沫器用于分离塔顶端中所夹带的液滴,以降低有价值的产品损失,改善塔后动力设备的操作。
32、此次设计采用网丝除沫器。U=除沫器直径 4液体再分布器液体向下流动时,有偏向塔壁流动现象,造成塔中心的填料不被润湿,故使用液体再分布器,对鲍尔环而言,不超过6m。故在填料3m处装一个再分布器。本次使用截锥式再分布器。5填料支撑板填料织成板是用来支撑填料的重量,本次设计使用最为常用的栅板。本次塔径为26001400mm,使用四块栅板叠加,直径为850mm6塔的顶部空间高度塔的顶部空间高度指顶第一层塔盘到塔顶封头的切线距离。为减少雾沫夹带的液体量,一般取1.21.5m,本次设计取1.2m八 设计概要表入塔混合气体的质量流量V21297 kg/h塔底吸收液的质量流量Lkg/h入塔混合气的密度p12.
33、83Kg/m3吸收液的粘度2.368mPas填料因子120m-1空隙率0.9比表面积106.4m2/m3Bain-Hougen关联式常数A0.0942Bain-Hougen关联式常数K1.75uf0.14m/su0.1m/s塔径2600mm喷淋密度L116.64m3/m2h塔截面积A5.307m2溶剂的摩尔流率L0.6068kmol/(m2s)惰气的摩尔流率G0.0438kmol/(m2s)CO2在PC中扩散系数1.1710-52/s气液两相的粘度0.015mPas吸收液与填料的表面张力39.1 mPas聚乙烯塑料的表面张力33.0 mPas气相总传质单元数NOG11.65气相总传质单元高度HOG0.695m设计高度H17.15m填料层的压降30mmH2O/m塔体壁厚22mm除沫器气速1.02m/s除沫器直径0.58m填料支撑板850mm顶部空间高度1.2m九 对本设计评价参考文献1.化工原理课程设计(天大教材)2.化学工程手册(第三版,上)3.现代填料塔技术指南4.小氮肥工艺设计手册理化数据5.合成氨6.小型合成氨厂生产工艺与操作7化工设备机械基础(第二版)华东理工出版社塔设备的机械设计 8化工原理课程设计(第二版)大连理工大学出版社塔设备的设计9化工过程及设备设计 华南理工大学 化学工业出版社填料吸收塔装置的设计 10化工原理(下册) 夏清 陈常贵 主编 天津大学出版社
链接地址:https://www.31ppt.com/p-2793091.html