人教版七年级数学上册各章知识点总结及对应章节练习.docx
《人教版七年级数学上册各章知识点总结及对应章节练习.docx》由会员分享,可在线阅读,更多相关《人教版七年级数学上册各章知识点总结及对应章节练习.docx(14页珍藏版)》请在三一办公上搜索。
1、精选优质文档-倾情为你奉上七年级上册各章知识点第一章有理数一、正数与负数1正数与负数表示具有相反意义的量。问:收入+10元与支出-10元意义相反吗?2有理数的概念与分类整数和分数统称有理数,能写成两个整数之比的数就是有理数 。判断:有理数可分为正有理数和负有理数( 错,还有0)零既不是正数,也不是负数。判断:0是最小的正整数(错 ),正整数负整数统称整数(错,还有0 ),正分数负分数统称分数(对 )有限小数和无限循环小数因都能化成分数,故都是有理数。判断:0是最小的有理数(错 )无限不循环小数因为不能化成两个整数之比,固称为无理数,如,/2等。判断:整数和小数统称有理数(错,整数和分数统称有理
2、数 )。二、数轴1数轴三要素:原点、正方向、单位长度 (另:数轴是一条有向直线)2作用:1)描点:数形结合;2)比较大小:沿着数轴正方向数在逐渐变大;3)直观反映互为相反数的两个点的位置关系;4)绝对值的几何意义;5)有理数都在数轴上,但数轴上的数并非都是有理数。3数轴上点的移动规律:“正加负减”向数轴正方向(或负方向)则对应的数应加(或减)4数轴上以数a和数b为端点的线段中点为a与b和的一半(如何用代数式表示?)三、相反数1 定义:若a+b=0,则a与b互为相反数 特例:因为0+0=0,所以0的相反数是02性质:若a与b互为相反数,则a+b= 0 -a不一定表示负数,但一定表示a的相反数(仅
3、仅相差一个负号)若a与b互为相反数且都不为零, -1 除0以外,互为相反数的两个数总是成双成对的分布在原点两侧且到原点的距离相等。互为相反数的两个数绝对值相等,平方也相等。即:=,四、绝对值1定义:在数轴上表示数a点到原点的距离,称为a的绝对值。记作2法则:1)正数的绝对值等于它本身;2)0的绝对值是0;3)负数的绝对值是它的相反数。即 3.一个数的绝对值越小,说明这个数越接近0(离原点越近)。绝对值最小的有理数是04.若,则 1 ,若,则 -1 5.数轴上数与数之间的距离满足: |a-b| 6.非负数的性质: ,则 五、倒数1定义:若ab=1,则a与b互为倒数。注意:因为0乘以任何数都为0,
4、所以0没有倒数。2若a与b互为倒数,则ab=1。3因两数相乘同号才能得正,故互为倒数的两数必定同号。所以负数的倒数肯定还是负数。4求带分数的倒数要先将其化为假分数,再颠倒分子分母位置(有负号的勿忘负号!)5注意:只有当指明时,才能表示的倒数!六、有理数的运算加 减:减去一个数等于加上这个数的相反数!切一刀就搞定加减混合运算要求对型符号化简相当纯熟,你行吗?乘除:除以一个不为零的数等于乘以这个数的倒数!(两数相除也满足同号得正,异号得负的法则)乘方混合运算顺序:先乘方,再乘除,最后加减;对于同级运算,一般按从左到右的顺序进行;如果有括号的,先做括号内的运算,按小括号、中括号、大括号依次进行. 七
5、、有理数的大小比较1)宏观比较法:正数0负数2)数轴法:在数轴上右边的数总比左边的大.(沿着数轴正方向数在逐渐变大)3)绝对值法:正数绝对值越大,数就越大;负数绝对值越大;数越小。4)作差法:与0作比较.若ab,则a-b0;若a=b,则a-b=0;若ab,则a-b0. 注:这就是:大数减小数等于正数,小数减大数等于负数,相等两数差为0.八、科学记数法,近似数,有效数字把一个绝对值较大的数,表示为称为科学记数法。a与原数只是小数点位置不同, n等于a化为原数时小数点移动的位数精强记1万=,1亿=;确到X位就是指四设五入到X位(这时要看X后面那一位上的数字)一个数,从左边第一个不是0的数起到末位为
6、止,所有的数字称为这个数的有效数字。对于较大数,一般先用科学记数法表示,的有效数字即为原数的有效数字,的末位数字在原数中的位置(数位)即为原数精确度;Q万,Q亿中Q的有效数字即为原数的有效数字。与万各自精确到哪位?第二章整式的加减代数式:含有 的算式。特例:单独的一个数也是代数式。注意:代数式中不含:代数式的书写规则:1)数与字母,字母与字母相乘,乘号可以省略,数字与数字相乘,乘号不能省略。2)数与字母相乘时,数要写在字母(包括带括号的多项式)前面3)带分数一定要写成假分数4)在含有字母的除法中,一般不用“”号,而写成分数的形式5)式子后面有单位时,和差形式的代数式要在单位前把代数式用括号括起
7、来。试列代数式:a与b的差的一半,a与b的一半的差,a与b的平方和,a与b的和的平方,a与b差的绝对值,a与b绝对值的差单项式:数与字母的 构成的代数式叫做单项式一个书写习惯:当数字因数是时,“1”省略不写;一个特例:单独的一个数也是单项式简称常数项;一个特殊字母:圆周率是常数两条判断捷径:A:单项式中不含“+”“”号,如不是单项式. B.单项式的分母中不含字母,如不是单项式。单项式中的 叫做这个单项式的系数。单项式中 叫做这个单项式的次数。说出系数和次数多项式:几个单项式的 叫做多项式。在多项式中,每个单项式简称为多项式的 。多项式里, 次数,就是这个多项式的次数. 练习:多项式9x42x3
8、xy-4,常数项为 ,次数最高项为 ,三次项系数为 ,这个多项式是 次 项式. 整式: 和 统称为整式. 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项,另外,所有的常数项都是同类项. “两个相同”是指:含有的字母相同;相同字母的指数也分别相同“两个无关”是指:与系数无关;与字母顺序无关合并同类项:把多项式中的同类项合并成一项,叫做合并同类项. 合并同类项的法则:同类项的系数相 ,所得的结果作为系数,字母和字母的指数 ,不是同类项, 。去括号法则:括号外的是“+”号,把括号和括号外的“+”号一起去掉,括号内各项的符号都 。括号外的是“”号,把括号和括号外的“”号一起去掉,括号内各
9、项都变号(变成它的 )。若括号外有系数应先用乘法分配律将系数绝对值乘给括号内的每一项,再按以上法则去括号。整式加减:把去括号,合并同类项的过程统称为整式加减。(与X无关=不含X项=X项系数为0)代数式求值三个要点:(1) 代入准备:“先化简,再代入”化到最简形式的标准:再也没有括号可去,再也没有同类项可合并(2) 代入格式:“当时,原式=”只有规范,才能得分!(3) 代入方法:“先挖坑,后填数”保持代数式的形式不变,只是把字母换成数,注意:该带的括号不能丢!第三章一元一次方程等式性质辨析:性质1同加(同减)同一个数。性质2,同乘(同除)同一个数。【性质2中有陷阱】若a=b,则3a+2=2b+3
10、. ( ), 若a=b,则3a-2=3b-2. ( ), 若-2a+3=-2b+3,则a=b. ( )若ax=ay,则x=y. ( ) 若a=b,则xa+y=xb+y. ( ) 若xa+y=xb+y,则a=b. ( )方程,整式方程,一元一次方程概念辨析含有字母的等式叫做方程. 方程的命名:先移项使得方程右端为0,判左端代数式名称定方程名称。分母中含字母的统称分式方程。5=4+1,以上8个式子哪些是方程?哪些是整式方程?哪些是一元一次方程?“方程的解”与“解方程”概念辨析使方程中等号左右两边相等的未知数的值,叫做方程的解.它是一个数,不是x这个字母!而解方程是指求出方程的解的过程. 方程解的“
11、不管三七二十一”:已知方程的解,不管三七二十一,把解代回方程建立等式方程的解检验方法(验根)把未知数的值分别代入方程的左、右两边计算它们的值,比较两边的值是否相等.(格式还记得吗?)解方程的一般步骤:变形名称具体做法变形依据注意事项去分母方程两边都乘以各分母的最小公倍数等式性质 不要漏乘不含分母的项; 分子是和、差的形式时,要在分子加上括号去括号可按“小、中、大”的顺序去括号 乘法分配律、去括号法则 不要漏乘括号里面的项; 防止出现符号错误移项把含有未知数的移项刀方程的一边,其他项移到方程的另一边等式性质 移项法则移项要变号不要漏项合并同类项把方程化为ax=b(a0)的形式合并同类项法则 系数
12、相加减; 字母和字母的指数不变系数化为1方程两边都除以未知数的系数等式性质 除数不能为0; 不要把分子、分母颠倒列方程解应用题步骤:1)写 2)审 3)设 4)找 5)列 6)解 7)验 8)答一元一次方程应用题归类:(1)和差倍分问题 (2)调配问题 (3)比例问题 (4)配套问题 (5)行程问题 (6)工程问题 (7)利息问题 (8)盈不足问题 (9)增长率问题 (10)打折销售与利润率问题 (11)年龄问题 (12)数字问题 (13)日历与数表问题(14)“超过的部分”问题(15)等积问题(16)方案设计问题第四章图形认识初步线段中点性质:如果点M是线段AB的中点,那么AMBM.=AB
13、(请补图)角平分线的性质:如果射线OM平分,那么(请补图)七年级上册各章节经典练习题第一章 有理数1.下列说法正确的是( ) A.有理数就是正有理数和负有理数 B.最小的有理数是0 C.有理数都可以在数轴上找到表示它的一个点 D.整数不能写成分数形式 2.下列几组数中,不相等的是( ) (+3)和+(-3) 和-(+5) C.+(-7)和-(-7) (-2)和-23.有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是( ) A. a +b 0 B. a -b 0 C. D.4.点A在数轴上距原点3个单位长度,将A向右移动4个单位长度,再向左移7个单位长度,此时A所对应的数是( ) B.
14、6 或6 或65.计算2000-(2001+2000-2001)的结果为( ) 6.若-a不是负数,那么a一定是( ) A.负数 B.正数 C.正数和零 D.负数和零7.如果两个数的和为负数,那么这两个数( ) A.都是正数 B.都是负数 C.至少有一个正数 D.至少有一个负数8.已知,且,则的积( ) A. 一定是正数 B. 一定是负数 C. 一定是非零数 D. 不能确定9.已知(b+3)2+a-2=0,则ba的值是( ) 10.有一张厚度为的纸,如果将它连续对折10次后的厚度为( )11.若有理数a、b满足ab0,且a + b0,则下列说法正确的是( ) Aa、b可能一正一负 Ba、b都是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 上册 各章 知识点 总结 对应 章节 练习
链接地址:https://www.31ppt.com/p-2792581.html